材料科学
膜
渗透力
纳米技术
离子
电子传输链
纳米流体学
电子
等离子体子
化学物理
化学工程
化学
光电子学
正渗透
反渗透
生物化学
物理
有机化学
工程类
量子力学
作者
Chengcheng Zhu,Li Xu,Yazi Liu,Jiang Liu,Jin Wang,Hanjun Sun,Ya‐Qian Lan,Chen Wang
标识
DOI:10.1038/s41467-024-48613-6
摘要
Abstract Nanofluidic membranes have demonstrated great potential in harvesting osmotic energy. However, the output power densities are usually hampered by insufficient membrane permselectivity. Herein, we design a polyoxometalates (POMs)-based nanofluidic plasmonic electron sponge membrane (PESM) for highly efficient osmotic energy conversion. Under light irradiation, hot electrons are generated on Au NPs surface and then transferred and stored in POMs electron sponges, while hot holes are consumed by water. The stored hot electrons in POMs increase the charge density and hydrophilicity of PESM, resulting in significantly improved permselectivity for high-performance osmotic energy conversion. In addition, the unique ionic current rectification (ICR) property of the prepared nanofluidic PESM inhibits ion concentration polarization effectively, which could further improve its permselectivity. Under light with 500-fold NaCl gradient, the maximum output power density of the prepared PESM reaches 70.4 W m −2 , which is further enhanced even to 102.1 W m −2 by changing the ligand to P 5 W 30 . This work highlights the crucial roles of plasmonic electron sponge for tailoring the surface charge, modulating ion transport dynamics, and improving the performance of nanofluidic osmotic energy conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI