马拉硫磷
东方果蝇
生物
谷胱甘肽S-转移酶
谷胱甘肽
戒毒(替代医学)
毒理
酶
生物化学
有害生物分析
杀虫剂
植物
铁杉科
医学
生态学
替代医学
病理
作者
Shuxia Zhang,Meng‐Ling Chen,Liesu Meng,Wei Dou,Jinjun Wang,Guangjie Yuan
标识
DOI:10.1016/j.pestbp.2023.105498
摘要
Glutathione S-transferases (GSTs) are one of the three detoxification enzyme families. The constitutive and inducible overexpression of GSTs genes plays an important role in insecticide resistance. Previous study showed that malathion resistance was polygenic, and elevated GSTs activity was one of the important factor participating in malathion resistance of Bactrocera dorsalis (Hendel), a serious economic pest worldwide. BdGSTd5 overexpression was inducible upon exposure to malathion. However, the involvement of BdGSTd5 in malathion resistance has not been clarified. In this study, we found that BdGSTd5 sequence harbored the conserved region of delta class GSTs, which were overexpressed in malathion resistant strain of B. dorsalis compared to malathion susceptible strain. The highest mRNA expression level of BdGSTd5 was found in 1-day-old adult, and the levels decreased with aging. The dsBdGSTd5 injection effectively silenced (73.4% reduction) the expression of BdGSTd5 and caused significant increase in susceptibility to malathion with a cumulative mortality increasing of 13.5% at 72 h post malathion treatment (p < 0.05). Cytotoxicity assay demonstrated that BdGSTd5 was capable of malathion detoxification. Molecular docking analysis further indicated the interactive potential of BdGSTd5 with malathion and its toxic oxide malaoxon. The recombinant BdGSTd5 exhibited glutathione-conjugating activity toward 1-chloro-2, 4-dinitrobenzene and malathion and malaoxon metabolic capacity with significant reduction (p < 0.05) of the peak areas by 90.0% and 73.1%, respectively. Taken together, the overexpressed BdGSTd5 contributes to malathion metabolism and resistance, which detoxify the malathion in B. dorsalis via directly depleting malathion and malaoxon.
科研通智能强力驱动
Strongly Powered by AbleSci AI