MutualDTA: An Interpretable Drug–Target Affinity Prediction Model Leveraging Pretrained Models and Mutual Attention

药物靶点 计算机科学 人工智能 机器学习 药物发现 生物 生物信息学 药理学
作者
Yongna Yuan,Siming Chen,Rizhen Hu,Xin Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01893
摘要

Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding. To overcome the above-mentioned problems, we propose an interpretable deep learning model called MutualDTA for predicting DTA. MutualDTA leverages the power of pretrained models to obtain accurate representations of drugs and targets. It also employs well-designed modules to extract hidden features from these representations. Furthermore, the interpretability of MutualDTA is realized by the Mutual-Attention module, which (i) establishes relationships between drugs and proteins from the perspective of intermolecular interactions between drug atoms and protein amino acid residues and (ii) allows MutualDTA to capture the binding sites based on attention scores. The test results on two benchmark data sets show that MutualDTA achieves the best performance compared to the 12 state-of-the-art models. Attention visualization experiments show that MutualDTA can capture partial interaction sites, which not only helps drug developers reduce the search space for binding sites, but also demonstrates the interpretability of MutualDTA. Finally, the trained MutualDTA is applied to screen high-affinity drug screens targeting Alzheimer's disease (AD)-related proteins, and the screened drugs are partially present in the anti-AD drug library. These results demonstrate the reliability of MutualDTA in drug development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linmu发布了新的文献求助30
4秒前
BIT发布了新的文献求助10
6秒前
无名老大应助稳定上分采纳,获得20
7秒前
dingxiaosong完成签到,获得积分10
7秒前
脑洞疼应助martiniwine采纳,获得10
9秒前
jingxuan完成签到,获得积分10
11秒前
11秒前
13秒前
16秒前
美好的摩托完成签到,获得积分20
16秒前
吡咯爱成环应助稳定上分采纳,获得20
16秒前
独钓寒江雪完成签到 ,获得积分10
17秒前
18秒前
BIT发布了新的文献求助10
18秒前
糖糖糖唐完成签到,获得积分10
19秒前
lopper完成签到,获得积分10
20秒前
AJ完成签到 ,获得积分10
22秒前
23秒前
23秒前
cdercder发布了新的文献求助10
24秒前
Owen应助小康长不大采纳,获得10
26秒前
情怀应助珂婷采纳,获得10
26秒前
26秒前
winew发布了新的文献求助30
27秒前
普普发布了新的文献求助10
28秒前
稳定上分完成签到,获得积分10
31秒前
33秒前
沐风发布了新的文献求助10
35秒前
ZhuTingdi发布了新的文献求助10
38秒前
FashionBoy应助普普采纳,获得10
42秒前
一地金啊发布了新的文献求助30
44秒前
隐形曼青应助hanzhang采纳,获得10
45秒前
独享一个人的世界完成签到,获得积分10
47秒前
orixero应助kk采纳,获得10
49秒前
两酒窝完成签到,获得积分10
49秒前
52秒前
123完成签到,获得积分10
53秒前
搜集达人应助科研通管家采纳,获得10
55秒前
深情安青应助科研通管家采纳,获得10
55秒前
珂婷发布了新的文献求助10
55秒前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374341
求助须知:如何正确求助?哪些是违规求助? 2991253
关于积分的说明 8744708
捐赠科研通 2675052
什么是DOI,文献DOI怎么找? 1465444
科研通“疑难数据库(出版商)”最低求助积分说明 677841
邀请新用户注册赠送积分活动 669411