YOLACTFusion: An instance segmentation method for RGB-NIR multimodal image fusion based on an attention mechanism

人工智能 计算机科学 RGB颜色模型 计算机视觉 分割 图像分割 骨干网 模式识别(心理学) 特征(语言学) 计算机网络 语言学 哲学
作者
Cheng Liu,Qingchun Feng,Yuhuan Sun,Yajun Li,Mengfei Ru,Lijia Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108186-108186 被引量:37
标识
DOI:10.1016/j.compag.2023.108186
摘要

The tomato plant's main-stem is a feasible lead for robotic searching the grows discretely-growing targets of harvesting, pruning or pollinating. Owing to the highlighted reflection characteristics of the main-stem in the near-infrared (NIR) waveband, this study proposes a multimodal hierarchical fusion method (YOLACTFusion) based on the attention mechanism, to achieve an instance segmentation of the main-stem from similar-colored differentiation (i.e., green leaf and green fruit) in robotic vision systems. The model inputs RGB images and 900–1100 nm NIR images into two ResNet50 backbone networks and uses a parallel attention mechanism to fuse feature maps of various scales together into the head network, to improve the segmentation performance of the main-stem of RGB images. The loss function for the multimodal image weights the original loss on the RGB image and the position offset loss and classification loss on the NIR image. Furthermore, the local depthwise separable convolution is used for the backbone network, and Conv-BN layers are merged to reduce the computational complexity. The results show that the precision and recall of YOLACTFusion of the main-stem detection, respectively reached 93.90 % and 62.60 %; and the precision and recall of instance segmentation reached 95.12 % and 63.41 %, respectively. Compared to YOLACT, the mean average precision (mAP) of YOLACTFusion is increased from 39.20 % to 46.29 %, the model size is reduced from 199.03 MB to 165.52 MB, while the image processing efficiency remains similar. The overall results show that the multimodal instance segmentation method proposed in this study significantly improves the detection and segmentation of tomato main-stems under a similar-colored background, which would be a potential method for improving agricultural robot's visual perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蓝完成签到,获得积分10
2秒前
ANT完成签到 ,获得积分10
2秒前
星星星完成签到,获得积分10
2秒前
田様应助金少爷采纳,获得10
3秒前
橘子林完成签到,获得积分10
5秒前
杭紫雪发布了新的文献求助10
5秒前
舒心的青亦完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助10
9秒前
白瑾完成签到,获得积分10
11秒前
解语花031发布了新的文献求助10
12秒前
科目三应助子木采纳,获得10
15秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
16秒前
孤星完成签到,获得积分10
16秒前
16秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
17秒前
彭于晏应助科研通管家采纳,获得10
17秒前
Diliam应助多情的青烟采纳,获得30
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
Joy完成签到,获得积分10
17秒前
无奈的又晴完成签到,获得积分10
18秒前
nini完成签到,获得积分10
19秒前
有魅力草丛完成签到 ,获得积分20
19秒前
杭紫雪完成签到,获得积分10
20秒前
lanbing802完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
有魅力草丛关注了科研通微信公众号
24秒前
wcuzhl完成签到,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900