亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

YOLACTFusion: An instance segmentation method for RGB-NIR multimodal image fusion based on an attention mechanism

人工智能 计算机科学 RGB颜色模型 计算机视觉 分割 图像分割 骨干网 模式识别(心理学) 特征(语言学) 计算机网络 语言学 哲学
作者
Cheng Liu,Qingchun Feng,Yuhuan Sun,Yajun Li,Mengfei Ru,Lijia Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108186-108186 被引量:37
标识
DOI:10.1016/j.compag.2023.108186
摘要

The tomato plant's main-stem is a feasible lead for robotic searching the grows discretely-growing targets of harvesting, pruning or pollinating. Owing to the highlighted reflection characteristics of the main-stem in the near-infrared (NIR) waveband, this study proposes a multimodal hierarchical fusion method (YOLACTFusion) based on the attention mechanism, to achieve an instance segmentation of the main-stem from similar-colored differentiation (i.e., green leaf and green fruit) in robotic vision systems. The model inputs RGB images and 900–1100 nm NIR images into two ResNet50 backbone networks and uses a parallel attention mechanism to fuse feature maps of various scales together into the head network, to improve the segmentation performance of the main-stem of RGB images. The loss function for the multimodal image weights the original loss on the RGB image and the position offset loss and classification loss on the NIR image. Furthermore, the local depthwise separable convolution is used for the backbone network, and Conv-BN layers are merged to reduce the computational complexity. The results show that the precision and recall of YOLACTFusion of the main-stem detection, respectively reached 93.90 % and 62.60 %; and the precision and recall of instance segmentation reached 95.12 % and 63.41 %, respectively. Compared to YOLACT, the mean average precision (mAP) of YOLACTFusion is increased from 39.20 % to 46.29 %, the model size is reduced from 199.03 MB to 165.52 MB, while the image processing efficiency remains similar. The overall results show that the multimodal instance segmentation method proposed in this study significantly improves the detection and segmentation of tomato main-stems under a similar-colored background, which would be a potential method for improving agricultural robot's visual perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
14秒前
神勇的又槐完成签到,获得积分10
31秒前
搜集达人应助科研通管家采纳,获得10
51秒前
隐形曼青应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
搜集达人应助科研通管家采纳,获得10
51秒前
隐形曼青应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
科目三应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
科目三应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
Criminology34应助科研通管家采纳,获得10
52秒前
52秒前
Shueason完成签到 ,获得积分10
56秒前
SHIRU发布了新的文献求助30
57秒前
1分钟前
隐形曼青应助沉默的倔驴采纳,获得10
1分钟前
1分钟前
Jasper应助幸福的逍遥采纳,获得10
1分钟前
balko完成签到,获得积分10
1分钟前
ZL完成签到,获得积分10
2分钟前
ZL发布了新的文献求助20
2分钟前
2分钟前
清风明月完成签到 ,获得积分10
2分钟前
2分钟前
切尔顿发布了新的文献求助10
2分钟前
Karol发布了新的文献求助10
2分钟前
2分钟前
haprier完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5746834
求助须知:如何正确求助?哪些是违规求助? 5439584
关于积分的说明 15355945
捐赠科研通 4886825
什么是DOI,文献DOI怎么找? 2627463
邀请新用户注册赠送积分活动 1575912
关于科研通互助平台的介绍 1532682