已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

YOLACTFusion: An instance segmentation method for RGB-NIR multimodal image fusion based on an attention mechanism

人工智能 计算机科学 RGB颜色模型 计算机视觉 分割 图像分割 骨干网 模式识别(心理学) 特征(语言学) 计算机网络 语言学 哲学
作者
Cheng Liu,Qingchun Feng,Yuhuan Sun,Yajun Li,Mengfei Ru,Lijia Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108186-108186 被引量:37
标识
DOI:10.1016/j.compag.2023.108186
摘要

The tomato plant's main-stem is a feasible lead for robotic searching the grows discretely-growing targets of harvesting, pruning or pollinating. Owing to the highlighted reflection characteristics of the main-stem in the near-infrared (NIR) waveband, this study proposes a multimodal hierarchical fusion method (YOLACTFusion) based on the attention mechanism, to achieve an instance segmentation of the main-stem from similar-colored differentiation (i.e., green leaf and green fruit) in robotic vision systems. The model inputs RGB images and 900–1100 nm NIR images into two ResNet50 backbone networks and uses a parallel attention mechanism to fuse feature maps of various scales together into the head network, to improve the segmentation performance of the main-stem of RGB images. The loss function for the multimodal image weights the original loss on the RGB image and the position offset loss and classification loss on the NIR image. Furthermore, the local depthwise separable convolution is used for the backbone network, and Conv-BN layers are merged to reduce the computational complexity. The results show that the precision and recall of YOLACTFusion of the main-stem detection, respectively reached 93.90 % and 62.60 %; and the precision and recall of instance segmentation reached 95.12 % and 63.41 %, respectively. Compared to YOLACT, the mean average precision (mAP) of YOLACTFusion is increased from 39.20 % to 46.29 %, the model size is reduced from 199.03 MB to 165.52 MB, while the image processing efficiency remains similar. The overall results show that the multimodal instance segmentation method proposed in this study significantly improves the detection and segmentation of tomato main-stems under a similar-colored background, which would be a potential method for improving agricultural robot's visual perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
麻瓜X完成签到,获得积分10
2秒前
2秒前
晓晓鹤发布了新的文献求助10
4秒前
4秒前
Jasper应助Laputa采纳,获得30
4秒前
Liz发布了新的文献求助10
5秒前
NexusExplorer应助笨鸟先飞采纳,获得10
5秒前
哈哈哈发布了新的文献求助10
6秒前
CipherSage应助裂头蚴采纳,获得10
6秒前
小秃子完成签到,获得积分10
8秒前
9秒前
10秒前
12秒前
wangai1011应助Tracy采纳,获得10
15秒前
雨相所至发布了新的文献求助10
15秒前
上好佳完成签到,获得积分10
17秒前
NattyPoe发布了新的文献求助10
17秒前
19秒前
xiaofeiyan发布了新的文献求助10
25秒前
JiegeSCI完成签到,获得积分10
25秒前
31秒前
夕夕成玦完成签到 ,获得积分10
31秒前
orixero应助啵啵小柚子采纳,获得10
32秒前
尹宝发布了新的文献求助10
35秒前
黄昏完成签到,获得积分10
35秒前
36秒前
36秒前
36秒前
英姑应助TTTYL采纳,获得30
37秒前
nanwan完成签到,获得积分10
37秒前
38秒前
39秒前
CodeCraft应助PanLi采纳,获得10
39秒前
39秒前
messi0731发布了新的文献求助10
40秒前
zhzhzh发布了新的文献求助10
41秒前
YTL2021完成签到,获得积分10
42秒前
tttt完成签到 ,获得积分10
42秒前
头上有犄角bb完成签到 ,获得积分10
43秒前
超超~完成签到,获得积分10
45秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627458
求助须知:如何正确求助?哪些是违规求助? 4713928
关于积分的说明 14962390
捐赠科研通 4784838
什么是DOI,文献DOI怎么找? 2554884
邀请新用户注册赠送积分活动 1516380
关于科研通互助平台的介绍 1476702