YOLACTFusion: An instance segmentation method for RGB-NIR multimodal image fusion based on an attention mechanism

人工智能 计算机科学 RGB颜色模型 计算机视觉 分割 图像分割 骨干网 模式识别(心理学) 特征(语言学) 计算机网络 语言学 哲学
作者
Cheng Liu,Qingchun Feng,Yuhuan Sun,Yajun Li,Mengfei Ru,Lijia Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:213: 108186-108186 被引量:14
标识
DOI:10.1016/j.compag.2023.108186
摘要

The tomato plant's main-stem is a feasible lead for robotic searching the grows discretely-growing targets of harvesting, pruning or pollinating. Owing to the highlighted reflection characteristics of the main-stem in the near-infrared (NIR) waveband, this study proposes a multimodal hierarchical fusion method (YOLACTFusion) based on the attention mechanism, to achieve an instance segmentation of the main-stem from similar-colored differentiation (i.e., green leaf and green fruit) in robotic vision systems. The model inputs RGB images and 900–1100 nm NIR images into two ResNet50 backbone networks and uses a parallel attention mechanism to fuse feature maps of various scales together into the head network, to improve the segmentation performance of the main-stem of RGB images. The loss function for the multimodal image weights the original loss on the RGB image and the position offset loss and classification loss on the NIR image. Furthermore, the local depthwise separable convolution is used for the backbone network, and Conv-BN layers are merged to reduce the computational complexity. The results show that the precision and recall of YOLACTFusion of the main-stem detection, respectively reached 93.90 % and 62.60 %; and the precision and recall of instance segmentation reached 95.12 % and 63.41 %, respectively. Compared to YOLACT, the mean average precision (mAP) of YOLACTFusion is increased from 39.20 % to 46.29 %, the model size is reduced from 199.03 MB to 165.52 MB, while the image processing efficiency remains similar. The overall results show that the multimodal instance segmentation method proposed in this study significantly improves the detection and segmentation of tomato main-stems under a similar-colored background, which would be a potential method for improving agricultural robot's visual perception.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葛辉辉完成签到,获得积分10
1秒前
kangkang发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
SciGPT应助ye采纳,获得10
3秒前
乐乐应助自信晟睿采纳,获得10
3秒前
葛辉辉发布了新的文献求助10
3秒前
4秒前
Wxd0211完成签到,获得积分20
4秒前
nemo完成签到,获得积分10
5秒前
小橙子发布了新的文献求助10
5秒前
lxh2424发布了新的文献求助30
5秒前
万能图书馆应助YHL采纳,获得10
5秒前
请叫我风吹麦浪应助hu970采纳,获得10
5秒前
传统的慕儿完成签到,获得积分10
6秒前
aurora完成签到 ,获得积分10
6秒前
6秒前
领导范儿应助gyt采纳,获得10
8秒前
麦麦发布了新的文献求助10
8秒前
晴天完成签到,获得积分10
8秒前
龙歪歪完成签到 ,获得积分20
9秒前
Crush完成签到,获得积分0
9秒前
苏照杭应助kydd采纳,获得10
10秒前
英姑应助研友_8yN60L采纳,获得10
10秒前
学术蠕虫完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
中心湖小海棠完成签到,获得积分10
12秒前
Orange应助new_vision采纳,获得10
12秒前
帅气妙彤完成签到,获得积分10
12秒前
ye完成签到,获得积分20
12秒前
易伊澤完成签到,获得积分10
12秒前
不准吃烤肉完成签到,获得积分10
12秒前
13秒前
华仔应助义气绿柳采纳,获得10
14秒前
踏实的诗筠完成签到 ,获得积分10
14秒前
ye发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762