司他内酯
突变体
生物
海藻糖
细胞生物学
腋芽
植物
开枪
拟南芥
基因
遗传学
生物化学
体外
外植体培养
作者
Franziska Fichtner,Jazmine L. Humphreys,François Barbier,Regina Feil,Philipp Westhoff,Anna Moseler,John E. Lunn,Steven M. Smith,Christine A. Beveridge
摘要
Summary The phytohormone strigolactone (SL) inhibits shoot branching, whereas the signalling metabolite trehalose 6‐phosphate (Tre6P) promotes branching. How Tre6P and SL signalling may interact and which molecular mechanisms might be involved remains largely unknown. Transcript profiling of Arabidopsis SL mutants revealed a cluster of differentially expressed genes highly enriched in the Tre6P pathway compared with wild‐type (WT) plants or brc1 mutants. Tre6P‐related genes were also differentially expressed in axillary buds of garden pea ( Pisum sativum ) SL mutants. Tre6P levels were elevated in the SL signalling mutant more axillary ( max ) growth 2 compared with other SL mutants or WT plants indicating a role of MAX2‐dependent SL signalling in regulating Tre6P levels. A transgenic approach to increase Tre6P levels demonstrated that all SL mutant lines and brc1 flowered earlier, showing all of these mutants were responsive to Tre6P. Elevated Tre6P led to increased branching in WT plants but not in max2 and max4 mutants, indicating some dependency between the SL pathway and Tre6P regulation of shoot branching. By contrast, elevated Tre6P led to an enhanced branching phenotype in brc1 mutants indicating independence between BRC1 and Tre6P. A model is proposed whereby SL signalling represses branching via Tre6P and independently of the BRC1 pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI