Electroconvulsive therapy-induced brain functional connectivity predicts therapeutic efficacy in patients with schizophrenia: a multivariate pattern recognition study

电休克疗法 精神分裂症(面向对象编程) 精神病 多元分析 额叶 心理学 医学 内科学 精神科
作者
Peng Li,Rixing Jing,Rongjiang Zhao,Zengbo Ding,Le Shi,Hongqiang Sun,Xiao Lin,Teng‐Teng Fan,Wentian Dong,Yong Fan,Lin Lü
出处
期刊:npj schizophrenia [Nature Portfolio]
卷期号:3 (1) 被引量:34
标识
DOI:10.1038/s41537-017-0023-7
摘要

Abstract Previous studies suggested that electroconvulsive therapy can influence regional metabolism and dopamine signaling, thereby alleviating symptoms of schizophrenia. It remains unclear what patients may benefit more from the treatment. The present study sought to identify biomarkers that predict the electroconvulsive therapy response in individual patients. Thirty-four schizophrenia patients and 34 controls were included in this study. Patients were scanned prior to treatment and after 6 weeks of treatment with antipsychotics only ( n = 16) or a combination of antipsychotics and electroconvulsive therapy ( n = 13). Subject-specific intrinsic connectivity networks were computed for each subject using a group information-guided independent component analysis technique. Classifiers were built to distinguish patients from controls and quantify brain states based on intrinsic connectivity networks. A general linear model was built on the classification scores of first scan (referred to as baseline classification scores) to predict treatment response. Classifiers built on the default mode network, the temporal lobe network, the language network, the corticostriatal network, the frontal-parietal network, and the cerebellum achieved a cross-validated classification accuracy of 83.82%, with specificity of 91.18% and sensitivity of 76.47%. After the electroconvulsive therapy, psychosis symptoms of the patients were relieved and classification scores of the patients were decreased. Moreover, the baseline classification scores were predictive for the treatment outcome. Schizophrenia patients exhibited functional deviations in multiple intrinsic connectivity networks which were able to distinguish patients from healthy controls at an individual level. Patients with lower classification scores prior to treatment had better treatment outcome, indicating that the baseline classification scores before treatment is a good predictor for treatment outcome.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vickeylea发布了新的文献求助10
刚刚
怡然冰之完成签到 ,获得积分10
刚刚
ppap完成签到,获得积分10
1秒前
2秒前
张姚发布了新的文献求助10
2秒前
112完成签到,获得积分10
3秒前
蜗牛发布了新的文献求助10
3秒前
淡淡芷天发布了新的文献求助10
5秒前
大气的甜瓜完成签到 ,获得积分10
7秒前
7秒前
9秒前
10秒前
bocky完成签到 ,获得积分10
10秒前
土土完成签到,获得积分10
14秒前
14秒前
14秒前
16秒前
17秒前
打打应助charcy采纳,获得10
20秒前
海洋发布了新的文献求助10
21秒前
老肥发布了新的文献求助10
21秒前
zho应助机智向薇采纳,获得10
21秒前
领导范儿应助毛毛妈采纳,获得10
22秒前
SCL发布了新的文献求助10
23秒前
张姚完成签到,获得积分10
24秒前
25秒前
25秒前
zmnzmnzmn应助clh采纳,获得10
26秒前
所所应助练习者采纳,获得10
30秒前
浅香千雪发布了新的文献求助10
30秒前
CipherSage应助蜗牛采纳,获得10
30秒前
kkk发布了新的文献求助10
31秒前
32秒前
33秒前
33秒前
YGYANG完成签到,获得积分10
34秒前
nltttt完成签到 ,获得积分10
35秒前
陈龙完成签到,获得积分10
36秒前
36秒前
一早完成签到 ,获得积分10
37秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775727
求助须知:如何正确求助?哪些是违规求助? 3321353
关于积分的说明 10205016
捐赠科研通 3036310
什么是DOI,文献DOI怎么找? 1666031
邀请新用户注册赠送积分活动 797258
科研通“疑难数据库(出版商)”最低求助积分说明 757783