舱室(船)
骨骼肌
医学
扩散
解剖
内科学
物理
地质学
热力学
海洋学
作者
Eric E. Sigmund,Dmitry S. Novikov,Dabang Sui,Obehi Ukpebor,Steven H. Baete,James S. Babb,Kecheng Liu,Thorsten Feiweier,Jane Kwon,KellyAnne McGorty,Jenny T. Bencardino,Els Fieremans
摘要
The purpose of this work was to carry out diffusion tensor imaging (DTI) at multiple diffusion times Td in skeletal muscle in normal subjects and chronic exertional compartment syndrome (CECS) patients and analyze the data with the random permeable barrier model (RPBM) for biophysical specificity. Using an institutional review board approved HIPAA-compliant protocol, seven patients with clinical suspicion of CECS and eight healthy volunteers underwent DTI of the calf muscle in a Siemens MAGNETOM Verio 3 T scanner at rest and after treadmill exertion at four different Td values. Radial diffusion values λrad were computed for each of seven different muscle compartments and analyzed with RPBM to produce estimates of free diffusivity D0, fiber diameter a, and permeability κ. Fiber diameter estimates were compared with measurements from literature autopsy reference for several compartments. Response factors (post/pre-exercise ratios) were computed and compared between normal controls and CECS patients using a mixed-model two-way analysis of variance. All subjects and muscle compartments showed nearly time-independent diffusion along and strongly time-dependent diffusion transverse to the muscle fibers. RPBM estimates of fiber diameter correlated well with corresponding autopsy reference. D0 showed significant (p < 0.05) increases with exercise for volunteers, and a increased significantly (p < 0.05) in volunteers. At the group level, response factors of all three parameters showed trends differentiating controls from CECS patients, with patients showing smaller diameter changes (p = 0.07), and larger permeability increases (p = 0.07) than controls. Time-dependent diffusion measurements combined with appropriate tissue modeling can provide enhanced microstructural specificity for in vivo tissue characterization. In CECS patients, our results suggest that high-pressure interfiber edema elevates free diffusion and restricts exercise-induced fiber dilation. Such specificity may be useful in differentiating CECS from other disorders or in predicting its response to either physical therapy or fasciotomy. Copyright © 2014 John Wiley & Sons, Ltd.
科研通智能强力驱动
Strongly Powered by AbleSci AI