Investigating Trust in Human-AI Collaboration for a Speech-Based Data Analytics Task

计算机科学 任务(项目管理) 分析 数据科学 自然语言处理 语音识别 人机交互 工程类 系统工程
作者
Abdullah Aman Tutul,Ehsanul Haque Nirjhar,Theodora Chaspari
出处
期刊:International Journal of Human-computer Interaction [Taylor & Francis]
卷期号:: 1-19 被引量:5
标识
DOI:10.1080/10447318.2024.2328910
摘要

Complex real-world problems can benefit from the collaboration between humans and artificial intelligence (AI) to achieve reliable decision-making. We investigate trust in a human-in-the-loop decision-making task, in which participants with background on psychological sciences collaborate with an explainable AI system for estimating one's anxiety level from speech. The AI system relies on the explainable boosting machine (EBM) model which takes prosodic features as the input and estimates the anxiety level. Trust in AI is quantified via self-reported (i.e., administered via a questionnaire) and behavioral (i.e., computed as user-AI agreement) measures, which are positively correlated with each other. Results indicate that humans and AI depict differences in performance depending on the characteristics of the specific case under review. Overall, human annotators' trust in the AI increases over time, with momentary decreases after the AI partner makes an error. Annotators further differ in terms of appropriate trust calibration in the AI system, with some annotators over-trusting and some under-trusting the system. Personality characteristics (i.e., agreeableness, conscientiousness) and overall propensity to trust machines further affect the level of trust in the AI system, with these findings approaching statistical significance. Results from this work will lead to a better understanding of human-AI collaboration and will guide the design of AI algorithms toward supporting better calibration of user trust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丢丢银发布了新的文献求助10
1秒前
1秒前
ZXH发布了新的文献求助10
3秒前
3秒前
不乖斋完成签到 ,获得积分10
3秒前
科研通AI5应助cqyc007采纳,获得10
3秒前
4秒前
浮游应助无心的仇血采纳,获得10
4秒前
迷路广缘完成签到,获得积分20
4秒前
5秒前
momo发布了新的文献求助20
5秒前
liudongling完成签到,获得积分10
5秒前
JofferyChan发布了新的文献求助10
6秒前
6秒前
Theprisoners完成签到,获得积分0
7秒前
8秒前
ZXH完成签到,获得积分10
8秒前
kids发布了新的文献求助10
8秒前
9秒前
风信子发布了新的文献求助10
9秒前
10秒前
Akim应助coolfake采纳,获得10
10秒前
10秒前
我爱吃肉发布了新的文献求助10
10秒前
xjh发布了新的文献求助10
11秒前
秦奥洋发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
依米完成签到,获得积分10
13秒前
丹尼发布了新的文献求助10
13秒前
搜集达人应助zk采纳,获得10
14秒前
JamesPei应助Dylan采纳,获得10
14秒前
14秒前
15秒前
医学事业完成签到,获得积分10
15秒前
15秒前
ggmm发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088069
求助须知:如何正确求助?哪些是违规求助? 4303134
关于积分的说明 13410290
捐赠科研通 4128759
什么是DOI,文献DOI怎么找? 2261043
邀请新用户注册赠送积分活动 1265168
关于科研通互助平台的介绍 1199563