Investigating Trust in Human-AI Collaboration for a Speech-Based Data Analytics Task

计算机科学 任务(项目管理) 分析 数据科学 自然语言处理 语音识别 人机交互 工程类 系统工程
作者
Abdullah Aman Tutul,Ehsanul Haque Nirjhar,Theodora Chaspari
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-19 被引量:5
标识
DOI:10.1080/10447318.2024.2328910
摘要

Complex real-world problems can benefit from the collaboration between humans and artificial intelligence (AI) to achieve reliable decision-making. We investigate trust in a human-in-the-loop decision-making task, in which participants with background on psychological sciences collaborate with an explainable AI system for estimating one's anxiety level from speech. The AI system relies on the explainable boosting machine (EBM) model which takes prosodic features as the input and estimates the anxiety level. Trust in AI is quantified via self-reported (i.e., administered via a questionnaire) and behavioral (i.e., computed as user-AI agreement) measures, which are positively correlated with each other. Results indicate that humans and AI depict differences in performance depending on the characteristics of the specific case under review. Overall, human annotators' trust in the AI increases over time, with momentary decreases after the AI partner makes an error. Annotators further differ in terms of appropriate trust calibration in the AI system, with some annotators over-trusting and some under-trusting the system. Personality characteristics (i.e., agreeableness, conscientiousness) and overall propensity to trust machines further affect the level of trust in the AI system, with these findings approaching statistical significance. Results from this work will lead to a better understanding of human-AI collaboration and will guide the design of AI algorithms toward supporting better calibration of user trust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助想学习采纳,获得10
1秒前
Jiang发布了新的文献求助30
1秒前
轻松的哈完成签到,获得积分10
1秒前
2秒前
2秒前
WangQ完成签到,获得积分10
3秒前
无畏发布了新的文献求助10
3秒前
3秒前
龙华之士发布了新的文献求助10
4秒前
echo发布了新的文献求助10
4秒前
gewenxue完成签到,获得积分10
4秒前
传奇3应助会撒娇的绮兰采纳,获得10
4秒前
隐形曼青应助渐入佳境采纳,获得10
4秒前
4秒前
风中冰香应助李琦采纳,获得10
4秒前
受伤的老头完成签到,获得积分10
5秒前
媚颜发布了新的文献求助10
5秒前
林梓博完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
典雅的依秋完成签到,获得积分10
6秒前
7秒前
LiuHK发布了新的文献求助10
7秒前
7秒前
husi完成签到,获得积分10
7秒前
7秒前
8秒前
Jared应助美丽小甜瓜采纳,获得10
8秒前
爆米花应助红豆盖饭采纳,获得10
8秒前
慕青应助不安忆寒采纳,获得10
8秒前
易止完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
9秒前
靓丽的千山完成签到 ,获得积分10
9秒前
10秒前
劳伦斯完成签到 ,获得积分10
10秒前
husi发布了新的文献求助10
11秒前
11秒前
星卅发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531594
求助须知:如何正确求助?哪些是违规求助? 4620404
关于积分的说明 14573182
捐赠科研通 4560142
什么是DOI,文献DOI怎么找? 2498713
邀请新用户注册赠送积分活动 1478629
关于科研通互助平台的介绍 1449993