Investigating Trust in Human-AI Collaboration for a Speech-Based Data Analytics Task

计算机科学 任务(项目管理) 分析 数据科学 自然语言处理 语音识别 人机交互 工程类 系统工程
作者
Abdullah Aman Tutul,Ehsanul Haque Nirjhar,Theodora Chaspari
出处
期刊:International Journal of Human-computer Interaction [Informa]
卷期号:: 1-19 被引量:5
标识
DOI:10.1080/10447318.2024.2328910
摘要

Complex real-world problems can benefit from the collaboration between humans and artificial intelligence (AI) to achieve reliable decision-making. We investigate trust in a human-in-the-loop decision-making task, in which participants with background on psychological sciences collaborate with an explainable AI system for estimating one's anxiety level from speech. The AI system relies on the explainable boosting machine (EBM) model which takes prosodic features as the input and estimates the anxiety level. Trust in AI is quantified via self-reported (i.e., administered via a questionnaire) and behavioral (i.e., computed as user-AI agreement) measures, which are positively correlated with each other. Results indicate that humans and AI depict differences in performance depending on the characteristics of the specific case under review. Overall, human annotators' trust in the AI increases over time, with momentary decreases after the AI partner makes an error. Annotators further differ in terms of appropriate trust calibration in the AI system, with some annotators over-trusting and some under-trusting the system. Personality characteristics (i.e., agreeableness, conscientiousness) and overall propensity to trust machines further affect the level of trust in the AI system, with these findings approaching statistical significance. Results from this work will lead to a better understanding of human-AI collaboration and will guide the design of AI algorithms toward supporting better calibration of user trust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可可可可汁完成签到 ,获得积分10
2秒前
无奈的尔容完成签到,获得积分10
4秒前
Xiaohu完成签到,获得积分10
5秒前
XIEQ发布了新的文献求助10
6秒前
6秒前
科研通AI6应助yyanxuemin919采纳,获得10
8秒前
8秒前
10秒前
12秒前
一头猪发布了新的文献求助10
13秒前
Bazinga完成签到,获得积分10
13秒前
嗯嗯嗯完成签到,获得积分10
14秒前
懒鲸鱼给懒鲸鱼的求助进行了留言
14秒前
15秒前
嘿嘿发布了新的文献求助10
15秒前
able完成签到 ,获得积分10
16秒前
17秒前
嗯嗯嗯发布了新的文献求助10
18秒前
丘比特应助度ewf采纳,获得10
19秒前
丽丽丽发布了新的文献求助10
19秒前
yyanxuemin919发布了新的文献求助10
19秒前
蘑菇完成签到 ,获得积分10
22秒前
jam发布了新的文献求助10
22秒前
23秒前
烟花应助ccc采纳,获得10
24秒前
拉长的诗蕊完成签到,获得积分10
24秒前
25秒前
大妙妙完成签到 ,获得积分10
28秒前
28秒前
里里完成签到 ,获得积分10
29秒前
韩妙发布了新的文献求助10
30秒前
科研通AI6应助丽丽丽采纳,获得10
31秒前
太渊完成签到 ,获得积分10
31秒前
ccc发布了新的文献求助10
33秒前
爆米花应助chen采纳,获得10
36秒前
赘婿应助fahbfafajk采纳,获得10
38秒前
38秒前
李健应助韩妙采纳,获得10
39秒前
40秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563579
求助须知:如何正确求助?哪些是违规求助? 4648467
关于积分的说明 14685031
捐赠科研通 4590445
什么是DOI,文献DOI怎么找? 2518519
邀请新用户注册赠送积分活动 1491143
关于科研通互助平台的介绍 1462432