Investigating Trust in Human-AI Collaboration for a Speech-Based Data Analytics Task

计算机科学 任务(项目管理) 分析 数据科学 自然语言处理 语音识别 人机交互 工程类 系统工程
作者
Abdullah Aman Tutul,Ehsanul Haque Nirjhar,Theodora Chaspari
出处
期刊:International Journal of Human-computer Interaction [Taylor & Francis]
卷期号:: 1-19 被引量:3
标识
DOI:10.1080/10447318.2024.2328910
摘要

Complex real-world problems can benefit from the collaboration between humans and artificial intelligence (AI) to achieve reliable decision-making. We investigate trust in a human-in-the-loop decision-making task, in which participants with background on psychological sciences collaborate with an explainable AI system for estimating one's anxiety level from speech. The AI system relies on the explainable boosting machine (EBM) model which takes prosodic features as the input and estimates the anxiety level. Trust in AI is quantified via self-reported (i.e., administered via a questionnaire) and behavioral (i.e., computed as user-AI agreement) measures, which are positively correlated with each other. Results indicate that humans and AI depict differences in performance depending on the characteristics of the specific case under review. Overall, human annotators' trust in the AI increases over time, with momentary decreases after the AI partner makes an error. Annotators further differ in terms of appropriate trust calibration in the AI system, with some annotators over-trusting and some under-trusting the system. Personality characteristics (i.e., agreeableness, conscientiousness) and overall propensity to trust machines further affect the level of trust in the AI system, with these findings approaching statistical significance. Results from this work will lead to a better understanding of human-AI collaboration and will guide the design of AI algorithms toward supporting better calibration of user trust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岁月静好发布了新的文献求助10
1秒前
fanfan完成签到,获得积分10
1秒前
yiyimx完成签到,获得积分10
2秒前
ll发布了新的文献求助10
2秒前
吃零食吃不下饭完成签到,获得积分10
4秒前
fanfan发布了新的文献求助10
4秒前
景平发布了新的文献求助10
4秒前
4秒前
mmj完成签到 ,获得积分10
5秒前
yuan1226完成签到 ,获得积分10
7秒前
无花果应助乖猫要努力采纳,获得10
7秒前
8秒前
9秒前
9秒前
听天由命W完成签到,获得积分10
9秒前
乐观小之应助目眩采纳,获得20
11秒前
ele_yuki完成签到,获得积分10
11秒前
淡然的铭完成签到,获得积分10
11秒前
斯文败类应助hx采纳,获得10
12秒前
小小富应助yiyimx采纳,获得10
12秒前
13秒前
Yaya发布了新的文献求助10
13秒前
李华完成签到,获得积分10
13秒前
hhhh发布了新的文献求助10
13秒前
大橙子应助深情的幼南采纳,获得10
14秒前
水濑心源发布了新的文献求助10
14秒前
gdwang1973完成签到,获得积分10
15秒前
15秒前
悦耳娩完成签到,获得积分10
17秒前
英俊的铭应助hhhh采纳,获得10
18秒前
19秒前
Castiron完成签到,获得积分10
20秒前
小董不懂发布了新的文献求助30
20秒前
Danielle完成签到,获得积分10
22秒前
23秒前
小蘑菇应助小董不懂采纳,获得10
25秒前
27秒前
TKTK完成签到,获得积分20
29秒前
qwe完成签到,获得积分10
29秒前
大橙子应助wpz采纳,获得10
29秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388