Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN–LSTM model

脑电图 自闭症谱系障碍 计算机科学 功能连接 自闭症 卷积神经网络 静息状态功能磁共振成像 人工智能 深度学习 模式识别(心理学) 任务(项目管理) 神经科学 认知 大脑活动与冥想 心理学 发展心理学 经济 管理
作者
Yongjie Xu,Zengjie Yu,Yisheng Li,Yuehan Liu,Ye Li,Yishan Wang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:250: 108196-108196 被引量:12
标识
DOI:10.1016/j.cmpb.2024.108196
摘要

People with autism spectrum disorder (ASD) often have cognitive impairments. Effective connectivity between different areas of the brain is essential for normal cognition. Electroencephalography (EEG) has been widely used in the detection of neurological diseases. Previous studies on detecting ASD with EEG data have focused on frequency-related features. Most of these studies have augmented data by splitting the dataset into time slices or sliding windows. However, such approaches to data augmentation may cause the testing data to be contaminated by the training data. To solve this problem, this study developed a novel method for detecting ASD with EEG data. This study quantified the functional connectivity of the subject's brain from EEG signals and defined the individual to be the unit of analysis. Publicly available EEG data were gathered from 97 and 92 subjects with ASD and typical development (TD), respectively, while they were at rest or performing a task. Time-series maps of brain functional connectivity were constructed, and the data were augmented using a deep convolutional generative adversarial network. In addition, a combined network for ASD detection, based on convolutional neural network (CNN) and long short-term memory (LSTM), was designed and implemented. Based on functional connectivity, the network achieved classification accuracies of 81.08% and 74.55% on resting state and task state data, respectively. In addition, we found that the functional connectivity of ASD differed from TD primarily in the short-distance functional connectivity of the parietal and occipital lobes and in the distant connections from the right temporoparietal junction region to the left posterior temporal lobe. This paper provides a new perspective for better utilizing EEG to understand ASD. The method proposed in our study is expected to be a reliable tool to assist in the diagnosis of ASD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
坚定胡萝卜完成签到,获得积分20
2秒前
2秒前
阳佟千青完成签到,获得积分10
2秒前
Lucas应助冷静帅哥采纳,获得30
2秒前
轻松的人龙完成签到,获得积分10
2秒前
片刻发布了新的文献求助10
2秒前
4秒前
Gavin完成签到,获得积分10
5秒前
sun完成签到,获得积分10
5秒前
xianyu发布了新的文献求助10
5秒前
5秒前
颖w发布了新的文献求助10
5秒前
lssdhr关注了科研通微信公众号
6秒前
Hello应助健康的绮晴采纳,获得10
6秒前
科研通AI5应助封小封采纳,获得10
6秒前
6秒前
7秒前
赘婿应助一株多肉采纳,获得30
7秒前
平常冬云完成签到,获得积分10
7秒前
xinxin发布了新的文献求助10
8秒前
kkk发布了新的文献求助10
9秒前
9秒前
科研虫儿发布了新的文献求助10
9秒前
shiran完成签到,获得积分20
9秒前
Zz完成签到,获得积分10
10秒前
nozero应助11111采纳,获得100
11秒前
11秒前
平常冬云发布了新的文献求助10
12秒前
芜湖完成签到,获得积分10
12秒前
12秒前
13秒前
Nires完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
terrell完成签到,获得积分10
14秒前
14秒前
稳重的寻琴完成签到,获得积分10
16秒前
16秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748428
求助须知:如何正确求助?哪些是违规求助? 3291391
关于积分的说明 10072942
捐赠科研通 3007152
什么是DOI,文献DOI怎么找? 1651507
邀请新用户注册赠送积分活动 786406
科研通“疑难数据库(出版商)”最低求助积分说明 751719