An end-to-end deep reinforcement learning method based on graph neural network for distributed job-shop scheduling problem

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 工作车间 人工智能 调度(生产过程) 元启发式 数学优化 机器学习 流水车间调度 马尔可夫过程 地铁列车时刻表 数学 统计 操作系统
作者
Jiang‐Ping Huang,Liang Gao,Xinyu Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121756-121756 被引量:12
标识
DOI:10.1016/j.eswa.2023.121756
摘要

Distributed Job-shop Scheduling Problem (DJSP) is a hotspot in industrial and academic fields due to its valuable application in the real-life productions. For DJSP, the available methods aways complete the job selection first and then search for an appropriate factory to assign the selected job, which means job selection and job assignment are done independently. This paper proposes an end-to-end Deep Reinforcement Learning (DRL) method to make the two decisions simultaneously. To capture the problem characteristics and realize the objective optimization, the Markov Decision Process (MDP) of DJSP is formulated. Specialised action space made up of operation-factory pairs is designed to achieve the simultaneous decision-making. A stitched disjunctive graph representation of DJSP is specially designed, and a Graph Neural Network (GNN) based feature extraction architecture is proposed to dig the state embedding during problem solving. A Proximal Policy Optimization (PPO) method is applied to train an action-selection policy. To further lead the agent to assign jobs to the factory with smaller makespan, a probability enhancement mechanism is designed. The experimental results on 240 test instances have shown that the proposed method outperforms 8 classical Priority Dispatching Rules (PDRs), 3 closely-related RL methods and 5 metaheuristics in terms of effectiveness, stability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
搞怪哑铃发布了新的文献求助10
3秒前
心灵美的犀牛完成签到,获得积分10
4秒前
4秒前
LRF发布了新的文献求助10
9秒前
10秒前
Minzz完成签到,获得积分10
13秒前
HeyYou发布了新的文献求助20
13秒前
猴哥完成签到,获得积分10
13秒前
14秒前
皇帝的床帘应助意义采纳,获得30
16秒前
由雨柏发布了新的文献求助30
17秒前
17秒前
郑凯天发布了新的文献求助10
18秒前
充电宝应助悦耳静枫采纳,获得10
20秒前
oceanao应助风中的天空采纳,获得10
20秒前
领导范儿应助cadnash采纳,获得10
23秒前
LRF关注了科研通微信公众号
24秒前
24秒前
28秒前
30秒前
echo发布了新的文献求助20
30秒前
31秒前
Eric发布了新的文献求助10
32秒前
乐乐应助猴哥采纳,获得10
33秒前
乐观生活发布了新的文献求助10
33秒前
由雨柏完成签到,获得积分10
33秒前
Owen应助成就的小熊猫采纳,获得10
34秒前
科研迪发布了新的文献求助10
35秒前
Jacob发布了新的文献求助10
36秒前
36秒前
HR112发布了新的文献求助20
36秒前
悦耳静枫发布了新的文献求助10
37秒前
oceanao应助HeyYou采纳,获得10
38秒前
肥陈完成签到,获得积分10
38秒前
完美世界应助selena采纳,获得10
42秒前
光力矩人发布了新的文献求助20
44秒前
彭于晏应助乐观生活采纳,获得10
45秒前
NexusExplorer应助KLM采纳,获得10
48秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228