An end-to-end deep reinforcement learning method based on graph neural network for distributed job-shop scheduling problem

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 工作车间 人工智能 调度(生产过程) 元启发式 数学优化 机器学习 流水车间调度 马尔可夫过程 地铁列车时刻表 数学 统计 操作系统
作者
Jiang‐Ping Huang,Liang Gao,Xinyu Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121756-121756 被引量:12
标识
DOI:10.1016/j.eswa.2023.121756
摘要

Distributed Job-shop Scheduling Problem (DJSP) is a hotspot in industrial and academic fields due to its valuable application in the real-life productions. For DJSP, the available methods aways complete the job selection first and then search for an appropriate factory to assign the selected job, which means job selection and job assignment are done independently. This paper proposes an end-to-end Deep Reinforcement Learning (DRL) method to make the two decisions simultaneously. To capture the problem characteristics and realize the objective optimization, the Markov Decision Process (MDP) of DJSP is formulated. Specialised action space made up of operation-factory pairs is designed to achieve the simultaneous decision-making. A stitched disjunctive graph representation of DJSP is specially designed, and a Graph Neural Network (GNN) based feature extraction architecture is proposed to dig the state embedding during problem solving. A Proximal Policy Optimization (PPO) method is applied to train an action-selection policy. To further lead the agent to assign jobs to the factory with smaller makespan, a probability enhancement mechanism is designed. The experimental results on 240 test instances have shown that the proposed method outperforms 8 classical Priority Dispatching Rules (PDRs), 3 closely-related RL methods and 5 metaheuristics in terms of effectiveness, stability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
kk发布了新的文献求助10
3秒前
3秒前
科研小助发布了新的文献求助10
3秒前
王鹏完成签到,获得积分10
4秒前
4秒前
5秒前
7秒前
研友_VZG7GZ应助求学狗采纳,获得10
7秒前
rrr完成签到,获得积分10
7秒前
7秒前
ZX612发布了新的文献求助10
7秒前
dick_zhang发布了新的文献求助10
8秒前
9秒前
doriseqin完成签到,获得积分10
9秒前
9秒前
慕青应助佳期如梦采纳,获得10
10秒前
不爱吃糖完成签到,获得积分10
10秒前
leoskrrr完成签到,获得积分10
10秒前
orixero应助log采纳,获得10
10秒前
10秒前
8888拉发布了新的文献求助10
11秒前
Akim应助晨雨采纳,获得10
11秒前
flash发布了新的文献求助10
13秒前
13秒前
WangSiwei完成签到,获得积分10
13秒前
CL发布了新的文献求助10
13秒前
酷酷含桃发布了新的文献求助10
13秒前
HYX发布了新的文献求助10
14秒前
14秒前
14秒前
李爱国应助17采纳,获得10
15秒前
15秒前
轻松新之发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
英姑应助晨雨采纳,获得10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755983
求助须知:如何正确求助?哪些是违规求助? 3299253
关于积分的说明 10109367
捐赠科研通 3013816
什么是DOI,文献DOI怎么找? 1655273
邀请新用户注册赠送积分活动 789692
科研通“疑难数据库(出版商)”最低求助积分说明 753361