An end-to-end deep reinforcement learning method based on graph neural network for distributed job-shop scheduling problem

计算机科学 强化学习 作业车间调度 马尔可夫决策过程 工作车间 人工智能 调度(生产过程) 元启发式 数学优化 机器学习 流水车间调度 马尔可夫过程 地铁列车时刻表 数学 统计 操作系统
作者
Jiang‐Ping Huang,Liang Gao,Xinyu Li
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:238: 121756-121756 被引量:12
标识
DOI:10.1016/j.eswa.2023.121756
摘要

Distributed Job-shop Scheduling Problem (DJSP) is a hotspot in industrial and academic fields due to its valuable application in the real-life productions. For DJSP, the available methods aways complete the job selection first and then search for an appropriate factory to assign the selected job, which means job selection and job assignment are done independently. This paper proposes an end-to-end Deep Reinforcement Learning (DRL) method to make the two decisions simultaneously. To capture the problem characteristics and realize the objective optimization, the Markov Decision Process (MDP) of DJSP is formulated. Specialised action space made up of operation-factory pairs is designed to achieve the simultaneous decision-making. A stitched disjunctive graph representation of DJSP is specially designed, and a Graph Neural Network (GNN) based feature extraction architecture is proposed to dig the state embedding during problem solving. A Proximal Policy Optimization (PPO) method is applied to train an action-selection policy. To further lead the agent to assign jobs to the factory with smaller makespan, a probability enhancement mechanism is designed. The experimental results on 240 test instances have shown that the proposed method outperforms 8 classical Priority Dispatching Rules (PDRs), 3 closely-related RL methods and 5 metaheuristics in terms of effectiveness, stability and generalization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Pretrial完成签到 ,获得积分10
刚刚
Jocelyn7发布了新的文献求助10
1秒前
wmmm发布了新的文献求助10
1秒前
余笙发布了新的文献求助10
2秒前
充电宝应助冷傲迎梦采纳,获得10
2秒前
彭于晏应助qi采纳,获得30
2秒前
科研通AI2S应助shor0414采纳,获得10
2秒前
ponyy发布了新的文献求助30
3秒前
秋之月发布了新的文献求助10
4秒前
skier发布了新的文献求助10
5秒前
balabala完成签到,获得积分20
5秒前
隐形曼青应助kb采纳,获得10
6秒前
yanyan发布了新的文献求助10
8秒前
繁笙完成签到 ,获得积分10
8秒前
8秒前
无言完成签到 ,获得积分10
8秒前
NONO完成签到 ,获得积分10
9秒前
星辰大海应助TT采纳,获得10
9秒前
11秒前
康康完成签到,获得积分10
11秒前
Xv完成签到,获得积分0
11秒前
14秒前
14秒前
香蕉觅云应助zfzf0422采纳,获得10
14秒前
15秒前
15秒前
李健应助爱听歌的向日葵采纳,获得10
16秒前
今后应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
烟花应助科研通管家采纳,获得10
16秒前
科研通AI5应助科研通管家采纳,获得80
16秒前
所所应助科研通管家采纳,获得20
17秒前
科研通AI5应助科研通管家采纳,获得10
17秒前
Owen应助科研通管家采纳,获得30
17秒前
婷婷发布了新的文献求助10
17秒前
zzt完成签到,获得积分10
19秒前
张小汉发布了新的文献求助30
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824