推荐系统
计算机科学
稳健性(进化)
可信赖性
计算机安全
深度学习
互联网隐私
万维网
人工智能
生物化学
化学
基因
作者
Zhiye Wang,Baisong Liu,Chennan Lin,Xueyuan Zhang,Ce Hu,Jiangcheng Qin,Linze Luo
标识
DOI:10.1109/iscc58397.2023.10218302
摘要
Deep learning based recommender systems(DLRS) as one of the up-and-coming recommender systems, and their robustness is crucial for building trustworthy recommender systems. However, recent studies have demonstrated that DLRS are vulnerable to data poisoning attacks. Specifically, an unpopular item can be promoted to regular users by injecting well-crafted fake user profiles into the victim recommender systems. In this paper, we revisit the data poisoning attacks on DLRS and find that state-of-the-art attacks suffer from two issues: user-agnostic and fake-user-unitary or target-item-agnostic, reducing the effectiveness of promotion attacks. To gap these two limitations, we proposed our improved method Generate Targeted Attacks(GTA), to implement targeted attacks on vulnerable users defined by user intent and sensitivity. We initialize the fake users by adding seed items to address the cold start problems of fake users so that we can implement targeted attacks. Our extensive experiments on two real-world datasets demonstrate the effectiveness of GTA.
科研通智能强力驱动
Strongly Powered by AbleSci AI