材料科学
催化作用
法拉第效率
蚀刻(微加工)
Atom(片上系统)
纳米技术
化学工程
金属
碳纤维
电极
物理化学
电化学
化学
有机化学
复合数
冶金
图层(电子)
计算机科学
嵌入式系统
复合材料
工程类
作者
Minghong Huang,Shenghua Zhou,Cheng‐Jie Yang,Chung‐Li Dong,Yingchun He,Wenbo Wei,Xiaofang Li,Qi‐Long Zhu,Zhenguo Huang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2024-11-01
标识
DOI:10.1021/acsnano.4c12576
摘要
Single-atom catalysts are promising for electrocatalytic CO2 conversion but face challenges in controllable syntheses. Herein, a facile selenic acid etching-assisted strategy has been developed to fabricate a hybrid metal-semimetal dual single-atom catalyst for electrocatalytic CO2 reduction. This strategy enables the simultaneous generation of monodisperse active sites and hierarchical morphologies with hollow nanostructures. The as-obtained catalyst with Fe–Se dual single-atom sites supported by porous nitrogen-doped carbon (FeSe-NC) shows exceptional catalytic activity and CO selectivity, delivering a Faradaic efficiency (FE) of >97% with industrially comparable jCO, superior to the Fe single-atom catalyst. Moreover, the FeSe-NC-based rechargeable Zn-CO2 battery delivers a high power density (2.01 mW cm–2) and outstanding FECO (>90%), as well as excellent cycling stability. Experimental results together with theoretical calculations reveal that the etching-induced defects and the Se-modulated Fe centers with asymmetrical polarized charge distributions synergistically facilitate the key intermediate *CO desorption and thus accelerate the CO2-to-CO conversion.
科研通智能强力驱动
Strongly Powered by AbleSci AI