耕作
弹道
挖
机制(生物学)
箱子
土壤科学
工程类
岩土工程
模拟
生物系统
地质学
机械工程
农学
物理
量子力学
历史
考古
天文
生物
作者
Lei Zhang,Yibin Zhai,Chuanyu Wu,Shouzhi Huang,Zhien Zhang
标识
DOI:10.1016/j.compag.2023.107783
摘要
Because of the poor subsoiling effects and high tillage resistances of small subsoiling machines when used on red soil in southern China, a new subsoiling mechanism based on functional bionics and an optimization method that employed an improved differential evolution (IDE) algorithm are proposed in this paper. The tillage performance was improved by causing the subsoiler to mimic the digging motion of a mole forefoot. The path synthesis of the subsoiling mechanism was solved by the IDE, and the tillage performance of the four-bar bionic subsoiling mechanism was evaluated by the discrete element method. First, the digging trajectory of the mole forefoot was mapped as the desired subsoiling trajectory. An optimization model for the path synthesis was established to minimize the position error between the desired subsoiling trajectory and the coupler curve of the mechanism; it was solved by the differential evolution algorithm with improvements in the mutation and crossover operations. It was found that the IDE could more rapidly search for a more accurate solution. The optimization results were used to design a bionic subsoiling mechanism that could mimic the digging trajectory of a mole forefoot. Second, the microscopic contact parameters among the soil particles were calibrated by soil accumulation and direct shear tests. In addition, a discrete element soil model was established that included dual coupling of variable contact models for the tillage layer and the plow pan. The tillage processes of an existing common subsoiling mechanism (CSM), the bionic subsoiling mechanism equipped with a common subsoiler (BSM&CS), and the bionic subsoiling mechanism equipped with a bionic subsoiler (BSM&BS) were analyzed by a joint ADAMS and EDEM simulation. The simulation results were analyzed according to established evaluation indexes for tillage performance. The comprehensive soil disturbance performance of the BSM&CS improved by 257.03% and its drag reduced by 10.87% from the CSM values, while the comprehensive soil disturbance performance of the BSM&BS improved by 312.78% and its drag reduced by 18.40% from the CSM values. Finally, the driving parameter combination for the BSM was optimized using the central composite design method.
科研通智能强力驱动
Strongly Powered by AbleSci AI