A novel battery thermal management system utilizing ultrathin thermal ground planes for prismatic Lithium-ion batteries

热失控 电池(电) 材料科学 磷酸铁锂 热的 锂(药物) 锂离子电池 工作温度 核工程 电池组 发热 复合材料 电气工程 热力学 工程类 功率(物理) 内分泌学 物理 医学
作者
Ziqi Jiang,Yinchuang Yang,Huihe Qiu
出处
期刊:Applied Thermal Engineering [Elsevier BV]
卷期号:231: 120869-120869 被引量:8
标识
DOI:10.1016/j.applthermaleng.2023.120869
摘要

Temperature significantly affects the energy efficiency, safety, life and performance of a lithium-ion battery pack in electric vehicles (EVs). High overall temperature and large temperature difference of the battery in fast charging (FC) can cause degradation in performance and even catastrophic failure like a thermal runaway. Besides, the increasing energy density of battery packs limits the space for the thermal management system. Therefore, we developed an ultrathin thermal ground plane-based battery thermal management system (UTTGP-BTMS), which utilizes 0.4 mm thick novel UTTGP with air cooling to dissipate the heat from the gap between batteries. Double-layer high pores per inch (PPI) mesh and wettability modification was adopted to enhance the thermal performance of the UTTGP. Before the evaluation test of the BTMS, the heat generation rates of the batteries in 2.2C to 4C fasting charging conditions are estimated by Bernardi's model. Then, the thermal performance of the novel battery thermal management system (BTMS) is experimentally investigated under 2.2C to 4C FC regimes at ambient temperatures from 10 °C to 50 °C. The BTMS is able to maintain a battery surface temperature of 55Ah Lithium iron phosphate (LiFeO4, LFP) batteries below 42.7 °C under a 4C charge rate, 57.3 °C at 50°C ambient temperature, respectively, and still achieve good surface temperature uniformity in all cases studied. Compared to a BTMS with copper heat spreaders, the temperature rise temperature non-uniformity, and thermal resistance are reduced by up to 23.3%, 28.4%, and 62.6%, respectively. Besides this, the effects of the pores density of the mesh in the UTTGP-BTMS are also studied by changing the sieve number of mesh, showing that a higher pore density gives better performance under large C-rates. The proposed UTTGP-BTMS showed significant performance with only submillimeter thickness in the thermoregulation of a battery pack, with the potential of being a viable solution for high-power battery thermal management in EVs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
18062677029完成签到 ,获得积分10
1秒前
黯然发布了新的文献求助10
1秒前
XYL发布了新的文献求助10
1秒前
2秒前
浮生发布了新的文献求助10
3秒前
研友_n0kYwL发布了新的文献求助10
3秒前
Xiaoxiao举报从前求助涉嫌违规
3秒前
云过半山完成签到,获得积分10
4秒前
慕青应助耍酷千山采纳,获得10
5秒前
科研通AI5应助123采纳,获得10
6秒前
6秒前
111完成签到,获得积分10
6秒前
baikaishui发布了新的文献求助10
6秒前
7秒前
嗯嗯发布了新的文献求助10
7秒前
JasonTrue发布了新的文献求助30
8秒前
涣醒完成签到,获得积分10
8秒前
8秒前
我是老大应助研友_n0kYwL采纳,获得10
8秒前
老马哥发布了新的文献求助10
8秒前
乐乐应助aa采纳,获得10
9秒前
9秒前
瑞_应助瘦瘦的访文采纳,获得10
9秒前
青花发布了新的文献求助10
10秒前
P_Chem完成签到,获得积分10
10秒前
科研通AI5应助欧阳采纳,获得10
10秒前
10秒前
科研通AI5应助weiwei采纳,获得10
11秒前
11秒前
12秒前
勤奋幻天发布了新的文献求助10
12秒前
暴躁的棒棒糖完成签到,获得积分10
12秒前
壹元侑子完成签到,获得积分10
12秒前
CodeCraft应助心灵美的白卉采纳,获得10
12秒前
科研通AI5应助spcwlh采纳,获得10
12秒前
CHEN完成签到 ,获得积分10
13秒前
13秒前
科研通AI5应助简让采纳,获得10
14秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3768892
求助须知:如何正确求助?哪些是违规求助? 3313845
关于积分的说明 10169393
捐赠科研通 3028741
什么是DOI,文献DOI怎么找? 1662112
邀请新用户注册赠送积分活动 794667
科研通“疑难数据库(出版商)”最低求助积分说明 756343