Implementation of Artificial Intelligence in Diagnosing Employees Attrition and Elevation: A Case Study on the IBM Employee Dataset

损耗 国际商用机器公司 人工智能 人力资源 领域(数学) 人力资源管理 知识管理 证人 计算机科学 集合(抽象数据类型) 工程类 机器学习 数据科学 管理 数学 牙科 程序设计语言 材料科学 纯数学 纳米技术 经济 医学
作者
Saurabh Sharma,Romica Bhat
出处
期刊:Emerald Publishing Limited eBooks [Emerald (MCB UP)]
卷期号:: 197-213 被引量:1
标识
DOI:10.1108/978-1-80382-027-920231010
摘要

Need of the Study: Artificial intelligence (AI) can be regarded as a big leap in the case of technological advancement. Developments in AI have profound implications for economic sectors and on the societal level. In contemporary times, AI is applied widely in assisting organisations in informing managerial decisions, organisational goals, and business strategies. One can very well witness the interest of human resource (HR) professionals in the implementation of AI for the formulation of HR policies and future frameworks. In the past few years, various research works have been carried out on how these two critical branches can be combined for bringing out the best in human resource management (HRM). The fundamental explanation for this is found in every organisation’s most important management aim is employee retention and elevation.Purpose: In this direction, this chapter will try to analyse the probability of employees leaving the company, the key drivers behind it, recommendations or strategies that can be implemented in improving employee retention, elevation predictions with the help of different features of machine learning, and the possibility of some other techniques other than key performance indicators (KPI), and rating and training score in this field.Methodology: The goal will be achieved with the help of implementing machine learning-based classification tools and an ensemble learning approach to the data set of the corporate sector.Findings: Machine learning techniques can be utilised to develop reliable models to find different factors for elevation and employee attrition.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiao双月完成签到,获得积分10
3秒前
等待天薇完成签到,获得积分10
4秒前
烟花应助奇博士采纳,获得10
5秒前
勤劳尔丝完成签到 ,获得积分10
5秒前
xiuxiu_27完成签到 ,获得积分10
6秒前
科研通AI6.1应助zyt采纳,获得30
7秒前
8秒前
温柔的忆之完成签到,获得积分10
9秒前
9秒前
12秒前
梦嘎丫完成签到,获得积分10
12秒前
12秒前
zww发布了新的文献求助10
12秒前
Sleven完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
13秒前
liuhuayaxi发布了新的文献求助10
13秒前
13秒前
13秒前
13秒前
13秒前
14秒前
会飞的小甘蔗完成签到 ,获得积分10
15秒前
15秒前
SYSUer发布了新的文献求助10
16秒前
CC完成签到,获得积分10
16秒前
经锦程完成签到,获得积分20
16秒前
SciGPT应助科研通管家采纳,获得10
16秒前
16秒前
打打应助科研通管家采纳,获得10
16秒前
Akim应助科研通管家采纳,获得10
16秒前
香蕉觅云应助科研通管家采纳,获得10
16秒前
SciGPT应助大力采纳,获得10
16秒前
CAOHOU应助科研通管家采纳,获得10
16秒前
17秒前
Akim应助科研通管家采纳,获得10
17秒前
CodeCraft应助科研通管家采纳,获得10
17秒前
李健应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1200
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5835999
求助须知:如何正确求助?哪些是违规求助? 6109015
关于积分的说明 15593710
捐赠科研通 4954300
什么是DOI,文献DOI怎么找? 2670242
邀请新用户注册赠送积分活动 1615547
关于科研通互助平台的介绍 1570628