亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of microvascular invasion and pathological differentiation of hepatocellular carcinoma based on a deep learning model

医学 肝细胞癌 病态的 放射科 分割 人工智能 病理 内科学 计算机科学
作者
Xiaojuan He,Xu Yang,Chaoyang Zhou,Rao Song,Yangyang Liu,Haiping Zhang,Yu Wang,Qianrui Fan,Dawei Wang,Weidao Chen,Jian Wang,Dajing Guo
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:172: 111348-111348 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111348
摘要

Abstract

Purpose

To develop a deep learning (DL) model based on preoperative contrast-enhanced computed tomography (CECT) images to predict microvascular invasion (MVI) and pathological differentiation of hepatocellular carcinoma (HCC).

Methods

This retrospective study included 640 consecutive patients who underwent surgical resection and were pathologically diagnosed with HCC at two medical institutions from April 2017 to May 2022. CECT images and relevant clinical parameters were collected. All the data were divided into 368 training sets, 138 test sets and 134 validation sets. Through DL, a segmentation model was used to obtain a region of interest (ROI) of the liver, and a classification model was established to predict the pathological status of HCC.

Results

The liver segmentation model based on the 3D U-Network had a mean intersection over union (mIoU) score of 0.9120 and a Dice score of 0.9473. Among all the classification prediction models based on the Swin transformer, the fusion models combining image information and clinical parameters exhibited the best performance. The area under the curve (AUC) of the fusion model for predicting the MVI status was 0.941, its accuracy was 0.917, and its specificity was 0.908. The AUC values of the fusion model for predicting poorly differentiated, moderately differentiated and highly differentiated HCC based on the test set were 0.962, 0.957 and 0.996, respectively.

Conclusion

The established DL models established can be used to noninvasively and effectively predict the MVI status and the degree of pathological differentiation of HCC, and aid in clinical diagnosis and treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
suzy-123完成签到,获得积分10
1秒前
好好完成签到 ,获得积分10
5秒前
生动的代亦完成签到 ,获得积分10
6秒前
16秒前
morena发布了新的文献求助20
21秒前
bkagyin应助邓邓采纳,获得10
43秒前
琴power完成签到,获得积分10
51秒前
脑洞疼应助香蕉傲松采纳,获得10
54秒前
Eatanicecube完成签到,获得积分10
55秒前
1分钟前
泥娃娃完成签到,获得积分10
1分钟前
友好听云发布了新的文献求助10
1分钟前
daqiao发布了新的文献求助10
1分钟前
1分钟前
香蕉傲松完成签到,获得积分10
1分钟前
1分钟前
凡高爱自由完成签到,获得积分10
1分钟前
香蕉傲松发布了新的文献求助10
1分钟前
2分钟前
Winnie完成签到,获得积分10
2分钟前
daqiao完成签到,获得积分10
2分钟前
科研通AI2S应助南风采纳,获得10
2分钟前
光亮千易完成签到,获得积分10
2分钟前
2分钟前
邓邓发布了新的文献求助10
2分钟前
李爱国应助威武碧蓉采纳,获得10
2分钟前
wanci应助可乐采纳,获得30
3分钟前
沐慕籽发布了新的文献求助10
3分钟前
Gracezzz完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
Lucas应助王靓仔采纳,获得10
3分钟前
小太阳完成签到 ,获得积分10
3分钟前
可乐发布了新的文献求助30
3分钟前
ztayx完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
王靓仔发布了新的文献求助10
3分钟前
微笑驳完成签到 ,获得积分10
3分钟前
沐慕籽完成签到,获得积分20
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460039
求助须知:如何正确求助?哪些是违规求助? 3054358
关于积分的说明 9041817
捐赠科研通 2743703
什么是DOI,文献DOI怎么找? 1505138
科研通“疑难数据库(出版商)”最低求助积分说明 695572
邀请新用户注册赠送积分活动 694860