Understanding college students’ cognitive engagement in online collaborative problem-solving: A multimodal data analysis

心理学 认知 任务(项目管理) 学生参与度 数学教育 在线讨论 计算机科学 万维网 工程类 神经科学 系统工程
作者
Hengtao Tang,Miao Dai,Xu Du,Jui-Long Hung,Hao Li
出处
期刊:Distance Education [Taylor & Francis]
卷期号:44 (2): 306-323 被引量:14
标识
DOI:10.1080/01587919.2023.2209025
摘要

AbstractLaboratory experience is critical to foster college students' collaborative problem-solving (CPS) abilities, but whether students stay cognitively engaged in CPS tasks during online laboratory sessions remains unknown. This study applied multimodal data analysis to examine college students' (N = 36) cognitive engagement in CPS during their online experimentation experience. Groups of three collaborated on CPS tasks via shared worksheets and computer-based simulations on videoconferences. Portable electroencephalogram instruments were used to determine students' levels of cognitive engagement in CPS activities. The multimodal data analysis (e.g., electroencephalogram, surveys, and artifacts) results showed a significant difference in students' cognitive engagement between different phases of CPS. The students' cognitive engagement significantly differed between groups who did and did not complete the task. Additionally, intrinsic motivation predicted students' cognitive engagement in the completion groups while self-efficacy was the primary predictor of cognitive engagement for the groups who did not complete the task.Keywords: collaborative problem-solvingmultimodal analyticselectroencephalogramcognitive engagementonlinepost-pandemic Disclosure statementNo potential conflict of interest was declared by the author(s).Data availability statementThe data that support the findings of this study is available from Miao Dai and Xu Du upon reasonable request.Additional informationFundingThis paper was supported by the National Key R&D Program of China (2021ZD0110702) and the National Science Foundation of China (61937001, 62177020) awarded to Xu Du.Notes on contributorsHengtao TangHengtao Tang is an assistant professor in the Department of Educational Studies at the University of South Carolina. His research interests include learning analytics; self-regulated learning; science, technology, engineering, and mathematics education; and open educational resources.Miao DaiMiao Dai is a PhD candidate at Central China Normal University, China. Her research interests include machine learning, deep learning, and educational data mining.Xu DuXu Du is currently a professor in the National Engineering Research Center for E-Learning at Central China Normal University, China. His research interests include smart environment and mobile learning, resource scheduling and recommendation, machine learning, and educational data miningJui-Long HungJui-Long Hung is a professor in the Department of Educational Technology, Boise State University and a researcher in the National Engineering Laboratory for Educational Big Data, Central China Normal University. His research interests include educational data and text mining and learning analytics.Hao LiHao Li is an associate professor in the National Engineering Research Center for E-Learning at Central China Normal University, China.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
啊娴仔完成签到,获得积分10
刚刚
tian发布了新的文献求助10
刚刚
meimei完成签到 ,获得积分10
刚刚
terryok完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
远方完成签到 ,获得积分10
1秒前
xLi完成签到,获得积分10
2秒前
咕噜噜咕噜完成签到,获得积分10
3秒前
佳宝完成签到,获得积分10
3秒前
求知的周完成签到,获得积分10
3秒前
追寻老九应助caisongliang采纳,获得10
4秒前
4秒前
樱香音子完成签到,获得积分10
4秒前
cdercder完成签到,获得积分0
4秒前
微笑采文完成签到,获得积分10
5秒前
Hammerdai完成签到,获得积分10
5秒前
高灵雨完成签到,获得积分10
6秒前
Bioflying完成签到,获得积分10
6秒前
Epiphany完成签到,获得积分10
6秒前
细腻怜容完成签到,获得积分10
6秒前
Wang应助arsenal采纳,获得10
7秒前
Ran完成签到 ,获得积分10
7秒前
科研牛马完成签到,获得积分10
8秒前
CMUSK完成签到,获得积分10
9秒前
JevonCheung完成签到 ,获得积分10
9秒前
WEI完成签到,获得积分10
9秒前
小刘一定能读C9博完成签到 ,获得积分10
9秒前
zxm发布了新的文献求助10
10秒前
10秒前
魁梧的黄豆完成签到,获得积分10
11秒前
valorb完成签到,获得积分0
11秒前
Richard完成签到 ,获得积分10
11秒前
出水芙蓉完成签到,获得积分10
12秒前
bingchem完成签到,获得积分10
14秒前
cp3xzh完成签到,获得积分10
15秒前
月亮上的猫完成签到,获得积分10
15秒前
caozhi完成签到,获得积分10
15秒前
红薯干完成签到,获得积分10
16秒前
南风知我意完成签到,获得积分20
16秒前
monica项发布了新的文献求助30
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953552
求助须知:如何正确求助?哪些是违规求助? 3499037
关于积分的说明 11093764
捐赠科研通 3229662
什么是DOI,文献DOI怎么找? 1785694
邀请新用户注册赠送积分活动 869467
科研通“疑难数据库(出版商)”最低求助积分说明 801470