石墨烯
煅烧
材料科学
超级电容器
氧化物
碳纤维
化学工程
法拉第效率
阳极
复合数
电容
纳米技术
电极
复合材料
化学
冶金
有机化学
催化作用
工程类
物理化学
作者
Police Anil Kumar Reddy,Hyungu Han,Ki Chul Kim,Sungjun Bae
标识
DOI:10.1016/j.cej.2023.144608
摘要
We report the phase-controlled synthesis of 2D reduced graphene oxide (rGO) and 3D graphitic carbon (gC) embedded CoS2@gC/rGO nanocomposite as an anode material for supercapacitor application. CoS2@gC polyhedrons sandwiched between thin layers of rGO were obtained by a sacrificial template method using the ZIF-67 metal organic framework (MOF) and graphene oxide (GO). The phase composition was altered by changing the calcination temperatures of the rGO sandwiched ZIF-67. In the presence of elemental sulfur, a single-step calcination method produced mixed phases of CoS and CoS2 that were engrained in amorphous carbon (CoSx@aC/rGO). However, the two-step calcination process yielded a phase pure CoS2 that was embedded in the graphic carbon (CoS2@gC/rGO). Phase pure CoS2 was formed as a result of the restricted diffusion of the sulfur atoms to the metallic cobalt core that was encapsulated in the graphitic carbon layers of the Co@gC/rGO composite. The CoS2@gC/rGO composite exhibited a specific capacitance of 1,188 F/g and cyclic stability of 76% and 99% coulombic efficiency. An all-solid-state asymmetric supercapacitor device was fabricated with CoS2@gC/rGO and hydrothermally reduced graphene oxide (hrGO) as the positive and negative electrodes, respectively. The device exhibited a high specific capacitance of 233 F/g at a 1.5 A/g current density and delivered high energy density of 82.88 W.h/kg at a power density of 1,199.56 W/kg. Particularly, the device conserved an energy density of 42.44 W.h/kg even at a high-power density of 7,999.9 W/kg. Additionally, it showed good cyclic stability after 10,000 cycles of repeated charging/discharging, suggesting its potential for practical supercapacitor applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI