An Automated Approach for Domain-Specific Knowledge Graph Generation─Graph Measures and Characterization

计算机科学 图形 知识图 领域知识 人工智能 数据挖掘 数据科学 理论计算机科学
作者
Connor O’Ryan,Kevin J. Hayes,Francis G. VanGessel,Ruth M. Doherty,William Wilson,John Martin Fischer,Zois Boukouvalas,Peter W. Chung
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01904
摘要

In 2020, nearly 3 million scientific and engineering papers were published worldwide (White, K. Publications Output: U.S. Trends And International Comparisons). The vastness of the literature that already exists, the increasing rate of appearance of new publications, and the timely translation of artificial intelligence methods into scientific and engineering communities have ushered in the development of automated methods for mining and extracting information from technical documents. However, domain-specific approaches for extracting knowledge graph representations from semantic information remain limited. In this paper, we develop a natural language processing (NLP) approach to extract knowledge graphs resulting in a semantically structured network (SSN) that can be queried. After a detailed exposition of the modeling method, the approach is demonstrated specifically for the synthetic chemistry of organic molecules from the text of approximately 100,000 full-length patents. In this paper, we focus specifically on characterizing the knowledge graph to develop insights into the linguistic patterns and trends within the data and to establish objective graph characteristics that may enable comparisons among other text-based knowledge graphs across domains. Graph characterization is performed for network motif structures, assortativity, and eigenvector centrality. The structural information provided by the measures reveals language tendencies commonly employed by authors in the text discourse for chemical reactions. These include observations of the prevalence of descriptions of specific compound names, that common solvents and drying agents cut across large numbers of chemical synthesis approaches, and that power-law trends clearly emerge in the limit of larger corpora. The findings provide important quantitative characterizations of knowledge graphs for use in validation in large data settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生动秋柳完成签到 ,获得积分10
2秒前
苗小七完成签到,获得积分10
2秒前
渔舟唱晚应助芝士猕猴桃采纳,获得10
2秒前
唠嗑在呐发布了新的文献求助10
3秒前
caidan发布了新的文献求助10
4秒前
shoplog完成签到,获得积分10
13秒前
脑洞疼应助路鸣泽采纳,获得10
13秒前
yar应助雪上一枝蒿采纳,获得10
17秒前
zs完成签到 ,获得积分10
20秒前
caidan完成签到,获得积分10
20秒前
AFong完成签到 ,获得积分10
26秒前
渔舟唱晚应助平安顺遂采纳,获得10
27秒前
在水一方应助zdd采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
桐桐应助科研通管家采纳,获得10
34秒前
渔舟唱晚应助科研通管家采纳,获得10
34秒前
JamesPei应助科研通管家采纳,获得10
34秒前
李健应助科研通管家采纳,获得10
34秒前
36秒前
cdercder应助眼睛大香芦采纳,获得10
38秒前
chen0521发布了新的文献求助10
38秒前
41秒前
41秒前
zdd发布了新的文献求助10
46秒前
等待戈多发布了新的文献求助10
46秒前
结实的啤酒完成签到 ,获得积分10
54秒前
55秒前
zdd完成签到,获得积分10
1分钟前
可爱的函函应助等待戈多采纳,获得10
1分钟前
1分钟前
caidan发布了新的文献求助10
1分钟前
1分钟前
1分钟前
石子发布了新的文献求助10
1分钟前
1分钟前
日月同辉完成签到,获得积分10
1分钟前
neinei778发布了新的文献求助10
1分钟前
陈永伟发布了新的文献求助10
1分钟前
王金娥发布了新的文献求助10
1分钟前
抹茶拿铁加奶砖完成签到 ,获得积分10
1分钟前
高分求助中
Востребованный временем 2500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
The Restraining Hand: Captivity for Christ in China 500
Encyclopedia of Mental Health Reference Work 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Mercury and Silver Mining in the Colonial Atlantic 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3374308
求助须知:如何正确求助?哪些是违规求助? 2991253
关于积分的说明 8744641
捐赠科研通 2675025
什么是DOI,文献DOI怎么找? 1465429
科研通“疑难数据库(出版商)”最低求助积分说明 677841
邀请新用户注册赠送积分活动 669411