Data-Driven Niching Differential Evolution with Adaptive Parameters Control for History Matching and Uncertainty Quantification

数学优化 差异进化 计算机科学 不确定度量化 CMA-ES公司 反演(地质) 最优化问题 算法 数学 协方差矩阵 机器学习 协方差矩阵的估计 生物 构造盆地 古生物学
作者
Xiaopeng Ma,Kai Zhang,Liming Zhang,Chuanjin Yao,Jun Yao,Haochen Wang,Jian Wang,Yongfei Yan
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:26 (02): 993-1010 被引量:98
标识
DOI:10.2118/205014-pa
摘要

Summary History matching is a typical inverse problem that adjusts the uncertainty parameters of the reservoir numerical model with limited dynamic response data. In most situations, various parameter combinations can result in the same data fit, termed as nonuniqueness of inversion. It is desirable to find as many global or local optima as possible in a single optimization run, which may help to reveal the distribution of the uncertainty parameters in the posterior space, which is particularly important for robust optimization, risk analysis, and decision making in reservoir management. However, many factors, such as the nonlinearity of inversion problems and the time-consuming numerical simulation, limit the performance of most existing inverse algorithms. In this paper, we propose a novel data-driven niching differential evolution algorithm with adaptive parameter control for nonuniqueness of inversion, called DNDE-APC. On the basis of a differential evolution (DE) framework, the proposed algorithm integrates a clustering approach, niching technique, and local surrogate assistant method, which is designed to balance exploration and convergence in solving the multimodal inverse problems. Empirical studies on three benchmark problems demonstrate that the proposed algorithm is able to locate multiple solutions for complex multimodal problems on a limited computational budget. Integrated with convolutional variational autoencoder (CVAE) for parameterization of the high-dimensional uncertainty parameters, a history matching workflow is developed. The effectiveness of the proposed workflow is validated with heterogeneous waterflooding reservoir case studies. By analyzing the fitting and prediction of production data, history-matched realizations, the distribution of inversion parameters, and uncertainty quantization of forecasts, the results indicate that the new method can effectively tackle the nonuniqueness of inversion, and the prediction result is more robust.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
高博士完成签到 ,获得积分10
1秒前
lilylian完成签到,获得积分10
1秒前
橙子完成签到 ,获得积分10
2秒前
满意的柏柳完成签到,获得积分10
2秒前
虚幻问枫发布了新的文献求助10
2秒前
651发布了新的文献求助10
2秒前
3秒前
夏夏发布了新的文献求助30
3秒前
Liu完成签到,获得积分10
4秒前
绿皮车发布了新的文献求助10
4秒前
jwj完成签到,获得积分10
6秒前
7秒前
CC发布了新的文献求助10
7秒前
充电宝应助FJY采纳,获得10
7秒前
Ljh完成签到 ,获得积分10
8秒前
天下无贼发布了新的文献求助10
8秒前
9秒前
10秒前
10秒前
爱静静应助zzyh采纳,获得10
11秒前
grey00777完成签到,获得积分10
11秒前
爆米花应助爱上人家四月采纳,获得10
11秒前
健康的叫兽完成签到 ,获得积分20
11秒前
11秒前
ding应助abib采纳,获得10
12秒前
在水一方应助651采纳,获得10
12秒前
12秒前
Jasper应助崽崽采纳,获得10
14秒前
吴媛媛发布了新的文献求助10
16秒前
瘦瘦牛排发布了新的文献求助10
17秒前
huangyi发布了新的文献求助10
18秒前
19秒前
沁沁发布了新的文献求助10
21秒前
Research完成签到 ,获得积分10
21秒前
21秒前
浅色墨水完成签到,获得积分10
23秒前
24秒前
25秒前
杨雨帆完成签到,获得积分10
25秒前
ljb完成签到 ,获得积分10
25秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Comprehensive Supramolecular Chemistry II 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3683455
求助须知:如何正确求助?哪些是违规求助? 3234796
关于积分的说明 9816742
捐赠科研通 2946423
什么是DOI,文献DOI怎么找? 1615586
邀请新用户注册赠送积分活动 763049
科研通“疑难数据库(出版商)”最低求助积分说明 737643