Using a Hybrid Deep Neural Network for Gas Classification

人工智能 计算机科学 支持向量机 电子鼻 人工神经网络 卷积神经网络 深度学习 模式识别(心理学) 分类器(UML) 多层感知器 神经毒气 感知器 统计分类 特征提取 机器学习 时滞神经网络
作者
Syuan-He Wang,Ting-I Chou,Shih-Wen Chiu,Kea‐Tiong Tang
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:21 (5): 6401-6407 被引量:45
标识
DOI:10.1109/jsen.2020.3038304
摘要

In terms of electronic nose algorithms, data pre-processing and classifier type are the two main factors affecting gas classification results. In the early stage, data pre-processing mostly takes specific information from gas-reaction waveforms as features and uses machine learning algorithms, such as K-Nearest Neighbor(KNN) and Support Vector Machine(SVM), to classify the gas data. In recent years, some research has been done on using deep learning for gas classification. The data pre-processing takes the overall process of the gas reaction as a feature map, and the classifier uses Convolutional Neural Network(CNN) architecture to classify the gases, resulting in classification accuracy being significantly higher than those of traditional machine learning algorithms. In addition, external factors such as wind speed, and distance from the gas source are also important factors affecting gas classification. The objectives of this study are as follows: 1) improving the data pre-processing method and classifier structure in deep learning for gas analysis and 2) using hybrid deep neural networks with Multilayer Perceptron (MLP) for environment compensation to improve the sensor drift problem caused by external factors. This study used one open-source gas dataset, applied three data pre-processing methods and two deep learning architectures (GasNet, SimResNet-9) for gas analysis and comparison, selected the method with the best classification accuracy and used it in Deep Neural Networks with MLP environmental compensation to promote the accuracy of classification further by learning the relationship between external factors and gas data. The proposed SimResNet-10_X_MLP was used for data training and classification in this study, achieving a 95% classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ssssixx完成签到,获得积分10
1秒前
蛇虫鼠蚁发布了新的文献求助10
2秒前
TJY发布了新的文献求助10
2秒前
2秒前
无花果应助seven采纳,获得10
3秒前
陈一晨发布了新的文献求助10
3秒前
yuying完成签到 ,获得积分10
4秒前
ssssixx发布了新的文献求助10
4秒前
4秒前
4秒前
SciGPT应助活泼的酬海采纳,获得10
5秒前
6秒前
充电宝应助哈基汪采纳,获得10
8秒前
8秒前
9秒前
10秒前
科研小白应助整齐大楚采纳,获得10
10秒前
子车茗应助飘萍过客采纳,获得30
11秒前
小小发布了新的文献求助10
13秒前
wty发布了新的文献求助10
13秒前
完美世界应助木子采纳,获得10
13秒前
14秒前
14秒前
14秒前
洁净修洁完成签到,获得积分10
14秒前
嘀嘀哒哒发布了新的文献求助10
15秒前
深情安青应助自然毛巾采纳,获得10
16秒前
16秒前
随心流浪应助hhhh采纳,获得10
17秒前
旭日发布了新的文献求助10
18秒前
18秒前
科目三应助大气半山采纳,获得10
20秒前
21秒前
今后应助嘀嘀哒哒采纳,获得10
21秒前
22秒前
wty完成签到,获得积分10
22秒前
星星发布了新的文献求助10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3301397
求助须知:如何正确求助?哪些是违规求助? 2936097
关于积分的说明 8476096
捐赠科研通 2609905
什么是DOI,文献DOI怎么找? 1424910
科研通“疑难数据库(出版商)”最低求助积分说明 662206
邀请新用户注册赠送积分活动 646213