Ultra-short-term prediction of photovoltaic output based on an LSTM-ARMA combined model driven by EEMD

光伏系统 希尔伯特-黄变换 自相关 自回归滑动平均模型 自回归模型 均方误差 偏自我相关函数 移动平均线 统计 计算机科学 自回归积分移动平均 时间序列 数学 工程类 能量(信号处理) 电气工程
作者
Yuanxu Jiang,Lingwei Zheng,Ding Xu
出处
期刊:Journal of Renewable and Sustainable Energy [American Institute of Physics]
卷期号:13 (4) 被引量:16
标识
DOI:10.1063/5.0056980
摘要

A new method is proposed for ultra-short-term prediction of photovoltaic (PV) output, based on an LSTM (long short-term memory)-ARMA (autoregressive moving average) combined model driven by ensemble empirical mode decomposition (EEMD) and aiming to reduce the intermittency and uncertainty of PV power generation. Considering the superposition of the overall trend and local fluctuations contained in the PV output data, an EEMD adaptive decomposition criterion based on continuous mean square error is proposed to extract the various scale components of the PV output data in the time–frequency domain; an ARMA (autoregressive moving average) model suitable for short correlation analysis is constructed for the intrinsic mode function components that characterize local fluctuations of PV output. Environmental parameters such as solar radiation, temperature, and humidity are introduced to construct a LSTM prediction model with autocorrelation capability and environmental characteristics for the EEMD residual that characterizes the overall trend of PV output. Finally, the overall trend and the local fluctuation forecast results are fused to realize an ultra-short-term forecast of PV output. The training set and test set were randomly selected from the PV microgrid system of Hangzhou Dianzi University and used for PV output prediction according to different seasons and weather types. The maximum MAPE on sunny, cloudy, and rainy days was 23.43%, 32.34%, and 33.10%, respectively. The minimum MAPE on sunny, cloudy, and rainy days was 5.53%, 6.47%, and 19.19%, respectively. The results show that the prediction performance of this method is better than traditional models. The ultra-short-term forecasting method for PV output proposed in this paper can help us to improve the safety, flexibility, and robustness of PV power systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
winifred完成签到 ,获得积分10
1秒前
bubble发布了新的文献求助10
1秒前
江峰发布了新的文献求助10
2秒前
无所屌谓发布了新的文献求助10
3秒前
hu发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
4秒前
世界和平发布了新的文献求助10
5秒前
6秒前
xiaoma发布了新的文献求助10
8秒前
10秒前
兜兜发布了新的文献求助10
10秒前
小蘑菇应助无所屌谓采纳,获得10
11秒前
11秒前
hhh发布了新的文献求助10
11秒前
情怀应助shaung yang采纳,获得10
12秒前
运动医学阿澜完成签到,获得积分10
13秒前
科研通AI2S应助闫伊森采纳,获得10
13秒前
13秒前
14秒前
14秒前
小杨完成签到 ,获得积分10
14秒前
Ashley完成签到,获得积分10
14秒前
14秒前
韶光与猫完成签到,获得积分10
14秒前
酷波er应助xiaoma采纳,获得10
15秒前
天天快乐应助ymh采纳,获得10
18秒前
安然发布了新的文献求助10
19秒前
后知后觉发布了新的文献求助20
20秒前
zho应助迅速醉冬采纳,获得50
20秒前
21秒前
21秒前
Marciu33发布了新的文献求助10
22秒前
hhh完成签到,获得积分20
22秒前
专注的帆布鞋完成签到 ,获得积分10
23秒前
23秒前
SciGPT应助MorningStar采纳,获得10
24秒前
阔达的秀发完成签到,获得积分10
24秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150225
求助须知:如何正确求助?哪些是违规求助? 2801322
关于积分的说明 7844073
捐赠科研通 2458853
什么是DOI,文献DOI怎么找? 1308673
科研通“疑难数据库(出版商)”最低求助积分说明 628556
版权声明 601721