燃烧
气溶胶
微粒
油页岩
化学成分
烟灰
环境化学
化学
矿物学
废物管理
有机化学
工程类
作者
Minna Aurela,Fanni Mylläri,Alar Konist,Sanna Saarikoski,Miska Olin,Pauli Simonen,Matthew Bloss,Dmitri Neshumayev,Laura Salo,Marek Maasikmets,Mikko Sipilä,Miikka Dal Maso,Jorma Keskinen,Hilkka Timonen,Topi Rönkkö
标识
DOI:10.1016/j.aeaoa.2021.100139
摘要
In this study, oil shale combustion emission measurements were conducted in a 60 kWth Circulating Fluidized Bed combustion test facility located in a laboratory-type environment. A comprehensive set of instruments including a nitrate-ion-based Chemical Ionization Atmospheric Pressure interface Time-of-Flight Mass Spectrometer, a Soot-Particle Aerosol Mass Spectrometer, and a Potential Aerosol Mass (PAM) chamber was utilized to investigate the chemical composition and concentrations of primary and secondary emissions in oil shale combustion. In addition, the size distribution of particles (2.5–414 nm) as well as concentration and composition of gaseous precursors were characterized. Altogether 12 different experiments were conducted. Primary emissions were studied in seven experiments and aged emissions using PAM chamber in five experiments. Combustion temperatures and solid fuel circulation rates varied between different experiments, and it was found that the burning conditions had a large impact on gaseous and particulate emissions. The majority of the combustion particles were below 10 nm in size during good burning whereas in poor burning conditions the emitted particles were larger and size distributions with 2–3 particle modes were detected. The main submicron particle chemical component was particulate organic matter (POM), followed by sulfate, chloride, nitrate, and ammonium. The secondary particulate matter formed in the PAM chamber was mostly POM and the concentration of POM was many orders of magnitude higher in aged aerosol compared to primary emissions. A significant amount of aromatic volatile organic compounds (VOCs) was measured as well. VOCs have the potential to go through gas-to-particle conversion during the oxidation process, explaining the observed high concentrations of aged POM. During good combustion, when VOC emissions were lower, over 80% of SO2 was oxidized either to gaseous H2SO4 (37%) or particulate sulfate (46%) in the PAM chamber, which mimic the atmospheric processes taken place in the ambient air after few days of emission.
科研通智能强力驱动
Strongly Powered by AbleSci AI