Computed tomography-based radiomics for predicting lymphovascular invasion in rectal cancer

医学 淋巴血管侵犯 无线电技术 逻辑回归 接收机工作特性 回顾性队列研究 队列 放射科 核医学 结直肠癌 计算机断层摄影术 曲线下面积 癌症 外科 内科学 转移
作者
Mou Li,Yumei Jin,Rui Jun,Yongchang Zhang,Yali Zhao,Chencui Huang,Shengmei Liu,Bin Song
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:146: 110065-110065 被引量:7
标识
DOI:10.1016/j.ejrad.2021.110065
摘要

To develop and externally validate a computed tomography (CT)-based radiomics model for predicting lymphovascular invasion (LVI) before treatment in patients with rectal cancer (RC).This retrospective study enrolled 351 patients with RC from three hospitals between March 2018 and March 2021. These patients were assigned to one of the following three groups: training set (n = 239, from hospital 1), internal validation set (n = 60, from hospital 1), and external validation set (n = 52, from hospitals 2 and 3). Large amounts of radiomics features were extracted from the intratumoral and peritumoral regions in the portal venous phase contrast-enhanced CT images. The score of radiomics features (Rad-score) was calculated by performing logistic regression analysis following the L1-based method. A combined model (Rad-score + clinical factors) was developed in the training cohort and validated internally and externally. The models were compared using the area under the receiver operating characteristic curve (AUC).Of the 351 patients, 106 (30.2%) had an LVI + tumor. Rad-score (comprised of 22 features) was significantly higher in the LVI + group than in the LVI- group (0.60 ± 0.17 vs. 0.42 ± 0.19, P = 0.001). The combined model obtained good predictive performance in the training cohort (AUC = 0.813 [95% CI: 0.758-0.861]), with robust results in internal and external validations (AUC = 0.843 [95% CI: 0.726-0.924] and 0.807 [95% CI: 0.674-0.903]).The proposed combined model demonstrated the potential to predict LVI preoperatively in patients with RC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wss发布了新的文献求助10
1秒前
找北ing完成签到 ,获得积分10
1秒前
深情安青应助nnnnnn采纳,获得10
1秒前
曲奇饼干发布了新的文献求助10
1秒前
顺心裙子完成签到,获得积分10
1秒前
buyuren完成签到,获得积分10
2秒前
痴情的萃发布了新的文献求助10
3秒前
嗯哼应助KingLancet采纳,获得20
3秒前
完美世界应助牟白容采纳,获得10
4秒前
4秒前
liu完成签到 ,获得积分10
4秒前
4秒前
5秒前
追寻清发布了新的文献求助10
5秒前
土豆金完成签到,获得积分20
5秒前
斯文可仁发布了新的文献求助10
6秒前
大有阳光应助申雪狐采纳,获得10
7秒前
Orange应助sssnesstudy采纳,获得10
8秒前
accept发布了新的文献求助10
8秒前
左左完成签到,获得积分20
8秒前
happyboy2008完成签到,获得积分10
9秒前
9秒前
SciGPT应助wss采纳,获得10
10秒前
犹豫梦旋完成签到,获得积分10
12秒前
Lim完成签到 ,获得积分10
13秒前
研友_VZG7GZ应助小洪包采纳,获得10
13秒前
小蘑菇应助斯文可仁采纳,获得10
15秒前
wss完成签到,获得积分20
15秒前
16秒前
pskgg发布了新的文献求助10
18秒前
19秒前
meta完成签到,获得积分10
19秒前
20秒前
20秒前
21秒前
斯文可仁完成签到,获得积分10
22秒前
23秒前
23秒前
NexusExplorer应助Juneaper采纳,获得10
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156078
求助须知:如何正确求助?哪些是违规求助? 2807458
关于积分的说明 7873196
捐赠科研通 2465782
什么是DOI,文献DOI怎么找? 1312412
科研通“疑难数据库(出版商)”最低求助积分说明 630102
版权声明 601905