Cortical Thickness from MRI to Predict Conversion from Mild Cognitive Impairment to Dementia in Parkinson Disease: A Machine Learning–based Model

医学 痴呆 疾病 帕金森病 随机森林 回顾性队列研究 人工智能 接收机工作特性 机器学习 核医学 内科学 计算机科学
作者
Na-Young Shin,Mirim Bang,Sang-Won Yoo,Joong-Seok Kim,Eunkyeong Yun,Uicheul Yoon,Kyunghwa Han,Kook Jin Ahn,Seung Koo Lee
出处
期刊:Radiology [Radiological Society of North America]
卷期号:300 (2): 390-399 被引量:13
标识
DOI:10.1148/radiol.2021203383
摘要

Background Group comparison results associating cortical thinning and Parkinson disease (PD) dementia (PDD) are limited in their application to clinical settings. Purpose To investigate whether cortical thickness from MRI can help predict conversion from mild cognitive impairment (MCI) to dementia in PD at an individual level using a machine learning–based model. Materials and Methods In this retrospective study, patients with PD and MCI who underwent MRI from September 2008 to November 2016 were included. Features were selected from clinical and cortical thickness variables in 10 000 randomly generated training sets. Features selected 5000 times or more were used to train random forest and support vector machine models. Each model was trained and tested in 10 000 randomly resampled data sets, and a median of 10 000 areas under the receiver operating characteristic curve (AUCs) was calculated for each. Model performances were validated in an external test set. Results Forty-two patients progressed to PDD (converters) (mean age, 71 years ± 6 [standard deviation]; 22 women), and 75 patients did not progress to PDD (nonconverters) (mean age, 68 years ± 6; 40 women). Four PDD converters (mean age, 74 years ± 10; four men) and 20 nonconverters (mean age, 67 years ± 7; 11 women) were included in the external test set. Models trained with cortical thickness variables (AUC range, 0.75–0.83) showed fair to good performances similar to those trained with clinical variables (AUC range, 0.70–0.81). Model performances improved when models were trained with both variables (AUC range, 0.80–0.88). In pair-wise comparisons, models trained with both variables more frequently showed better performance than others in all model types. The models trained with both variables were successfully validated in the external test set (AUC range, 0.69–0.84). Conclusion Cortical thickness from MRI helped predict conversion from mild cognitive impairment to dementia in Parkinson disease at an individual level, with improved performance when integrated with clinical variables. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Port in this issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张宁波完成签到,获得积分10
刚刚
99giddens举报中午求助涉嫌违规
1秒前
稞小弟完成签到,获得积分10
1秒前
yjchenf完成签到 ,获得积分10
2秒前
4秒前
Joanna完成签到,获得积分10
6秒前
哇咔咔发布了新的文献求助10
8秒前
舒云易烟完成签到,获得积分10
9秒前
A晨完成签到 ,获得积分10
10秒前
11秒前
Axeliar完成签到,获得积分10
14秒前
何劲松完成签到,获得积分10
16秒前
好样的发布了新的文献求助10
18秒前
18秒前
鄙人不善奔跑完成签到,获得积分10
19秒前
XYZ发布了新的文献求助10
21秒前
wenhuanwenxian完成签到 ,获得积分10
24秒前
哇咔咔完成签到 ,获得积分10
26秒前
luo完成签到 ,获得积分10
27秒前
博林大师完成签到,获得积分10
27秒前
man完成签到,获得积分10
31秒前
31秒前
32秒前
32秒前
33秒前
Kk发布了新的文献求助10
36秒前
41秒前
yhyhyhyh完成签到,获得积分10
41秒前
默默向雪完成签到,获得积分10
42秒前
风筝与亭完成签到 ,获得积分10
45秒前
菜菜子发布了新的文献求助10
47秒前
笨笨洙关注了科研通微信公众号
50秒前
思源应助顶顶小明采纳,获得10
50秒前
50秒前
科研通AI2S应助三三四采纳,获得10
54秒前
55秒前
55秒前
菜菜子完成签到,获得积分20
57秒前
JJ完成签到,获得积分20
59秒前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137575
求助须知:如何正确求助?哪些是违规求助? 2788520
关于积分的说明 7787428
捐赠科研通 2444861
什么是DOI,文献DOI怎么找? 1300110
科研通“疑难数据库(出版商)”最低求助积分说明 625813
版权声明 601023