Radiographical assessment of tumour stroma and treatment outcomes using deep learning: a retrospective, multicohort study

医学 基质 回顾性队列研究 队列 癌症 肿瘤科 内科学 比例危险模型 病理 免疫组织化学 放射科
作者
Yuming Jiang,Xiaokun Liang,Zhen Han,Wei Wang,Sujuan Xi,Tuanjie Li,Chuanli Chen,Qingyu Yuan,Na Li,Jiang Yu,Yaoqin Xie,Yikai Xu,Zhiwei Zhou,George A. Poultsides,Guoxin Li,Ruijiang Li
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:3 (6): e371-e382 被引量:36
标识
DOI:10.1016/s2589-7500(21)00065-0
摘要

BackgroundThe tumour stroma microenvironment plays an important part in disease progression and its composition can influence treatment response and outcomes. Histological evaluation of tumour stroma is limited by access to tissue, spatial heterogeneity, and temporal evolution. We aimed to develop a radiological signature for non-invasive assessment of tumour stroma and treatment outcomes.MethodsIn this multicentre, retrospective study, we analysed CT images and outcome data of 2209 patients with resected gastric cancer from five independent cohorts recruited from two centres (Nanfang Hospital of Southern Medical University [Guangzhou, China] and Sun Yat-sen University Cancer Center [Guangzhou, China]). Patients with histologically confirmed gastric cancer, at least 15 lymph nodes harvested, preoperative abdominal CT available, and complete clinicopathological and follow-up data were eligible for inclusion. Tumour tissue was collected for patients in the training cohort (321 patients), internal validation cohort one (246 patients), and external validation cohort one (128 patients). Four stroma classes were defined according to the protein expression of α-smooth muscle actin and periostin assessed by immunohistochemistry. The primary objective was to predict the histologically based stroma classes by using preoperative CT images. We trained a deep convolutional neural network model using the training cohort and tested the model in the internal and external validation cohort one. We evaluated the model's association with prognosis in the training cohort, two internal, and two external validation cohorts and compared outcomes of patients who received or did not receive adjuvant chemotherapy.FindingsThe deep-learning model achieved a high diagnostic accuracy for assessing tumour stroma in both internal validation cohort one (area under the receiver operating characteristic curve [AUC] 0·96–0·98]) and external validation cohort one (AUC 0·89–0·94). The stromal imaging signature was significantly associated with disease-free survival and overall survival in all cohorts (p<0·0001). The predicted stroma classes remained an independent prognostic factor adjusting for clinicopathological variables including tumour size, stage, differentiation, and Lauren histology. In patients with stage II or III disease in predicted stroma classes one and two subgroups, patients who received adjuvant chemotherapy had improved survival compared with those who did not (in those with stage II disease hazard ratio [HR] 0·48 [95% CI 0·29–0·77], p=0·0021; and in those with stage III disease HR 0·70 [0·57–0·85], p=0·00042). However, in the other two subgroups adjuvant chemotherapy was not associated with survival and might even be detrimental in the predicted stroma class 4 subgroup (HR 1·48 [1·08–2·03], p=0·013).InterpretationThe deep-learning model could allow for accurate and non-invasive evaluation of tumour stroma from CT images in gastric cancer. The radiographical model predicted chemotherapy outcomes and could be used in combination with clinicopathological criteria to refine prognosis and inform treatment decisions of patients with gastric cancer.FundingNone.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
岗岗发布了新的文献求助10
1秒前
酷波er应助jing采纳,获得10
2秒前
未来可期发布了新的文献求助10
3秒前
阿喵发布了新的文献求助10
4秒前
11秒前
阿喵完成签到,获得积分10
11秒前
奥特曼的奥特蛋完成签到,获得积分10
12秒前
13秒前
14秒前
共享精神应助学五渣采纳,获得10
14秒前
5High_0完成签到 ,获得积分10
15秒前
15秒前
三瓣橘子应助mmm采纳,获得10
16秒前
17秒前
jing发布了新的文献求助10
18秒前
温暖发布了新的文献求助10
19秒前
23秒前
素笺生花发布了新的文献求助10
23秒前
冰魂应助豆子采纳,获得10
24秒前
受伤听露完成签到 ,获得积分10
25秒前
Lucas应助guanshujuan采纳,获得10
26秒前
终澈发布了新的文献求助10
27秒前
丘比特应助黄大师采纳,获得10
28秒前
29秒前
32秒前
33秒前
34秒前
研知发布了新的文献求助10
36秒前
素笺生花完成签到,获得积分10
38秒前
无花果应助FKVB_采纳,获得10
39秒前
黄大师发布了新的文献求助10
39秒前
冰魂应助豆子采纳,获得10
43秒前
研知完成签到,获得积分20
46秒前
黄大师完成签到,获得积分10
46秒前
47秒前
所所应助health采纳,获得10
47秒前
终澈完成签到,获得积分10
47秒前
完美世界应助jing采纳,获得10
49秒前
51秒前
FKVB_发布了新的文献求助10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
T/CAB 0344-2024 重组人源化胶原蛋白内毒素去除方法 1000
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3775402
求助须知:如何正确求助?哪些是违规求助? 3321094
关于积分的说明 10203375
捐赠科研通 3035963
什么是DOI,文献DOI怎么找? 1665887
邀请新用户注册赠送积分活动 797128
科研通“疑难数据库(出版商)”最低求助积分说明 757744