Improved deep convolutional embedded clustering with re-selectable sample training

聚类分析 计算机科学 人工智能 样品(材料) 模式识别(心理学) 培训(气象学) 地理 色谱法 化学 气象学
作者
Hu Lu,Chao Chen,Hui Wei,Zhenghai Ma,Ke Jiang,Yingquan Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:127: 108611-108611 被引量:28
标识
DOI:10.1016/j.patcog.2022.108611
摘要

• This paper proposes an improved deep convolutional embedded clustering algorithm using reliable samples. • This paper designs the new deep clustering model structure and corresponding loss function. • In this study, we select reliable samples with pseudo-labels and pass them to the convolutional neural network for training to get a better clustering model. • We conducted experimental tests on four standard data sets and show the better performance compared to the state-of-the-art clustering algorithms. The deep clustering algorithm can learn the latent features of the embedded subspace, and further realize the clustering of samples in the feature space. The existing deep clustering algorithms mostly integrate neural networks and traditional clustering algorithms. However, for sample sets with many noise points, the effect of the clustering remains unsatisfactory. To address this issue, we propose an improved deep convolutional embedded clustering algorithm using reliable samples (IDCEC) in this paper. The algorithm first uses the convolutional autoencoder to extract features and cluster the samples. Then we select reliable samples with pseudo-labels and pass them to the convolutional neural network for training to get a better clustering model. We construct a new loss function for backpropagation training and implement an unsupervised deep clustering method. To verify the performance of the method proposed in this paper, we conducted experimental tests on standard data sets such as MNIST and USPS. Experimental results show that our method has better performance compared to traditional clustering algorithms and the state-of-the-art deep clustering algorithm under four clustering metrics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黙宇循光发布了新的文献求助10
刚刚
刚刚
旺旺大礼包完成签到,获得积分10
2秒前
2秒前
布溜发布了新的文献求助10
2秒前
hsy发布了新的文献求助10
2秒前
eureka发布了新的文献求助10
3秒前
acchangg应助ss采纳,获得30
4秒前
彩色的过客完成签到 ,获得积分10
4秒前
NexusExplorer应助heheha采纳,获得10
5秒前
董竹君发布了新的文献求助30
6秒前
清爽的孤萍完成签到 ,获得积分10
6秒前
大个应助hsy采纳,获得10
6秒前
0201完成签到 ,获得积分10
9秒前
13秒前
杜康完成签到,获得积分10
14秒前
15秒前
15秒前
独特的芷发布了新的文献求助10
16秒前
16秒前
赘婿应助陪你闯荡采纳,获得10
16秒前
17秒前
18秒前
18秒前
正在下雨发布了新的文献求助10
19秒前
19秒前
Jiang应助dahuashengli采纳,获得20
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
HEIKU应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
华仔应助科研通管家采纳,获得10
19秒前
打打应助科研通管家采纳,获得10
20秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
领导范儿应助科研通管家采纳,获得10
20秒前
HEIKU应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
HEIKU应助科研通管家采纳,获得10
20秒前
JamesPei应助科研通管家采纳,获得10
20秒前
英俊的铭应助科研通管家采纳,获得10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150244
求助须知:如何正确求助?哪些是违规求助? 2801374
关于积分的说明 7844178
捐赠科研通 2458888
什么是DOI,文献DOI怎么找? 1308710
科研通“疑难数据库(出版商)”最低求助积分说明 628562
版权声明 601721