Independent Validation and Assay Standardization of Improved Metabolic Biomarker Signature to Differentiate Pancreatic Ductal Adenocarcinoma From Chronic Pancreatitis

胰腺癌 胰腺导管腺癌 医学 内科学 胰腺炎 分析物 肿瘤科 恶性肿瘤 生物标志物 代谢组学 队列 肝细胞癌 癌症 胃肠病学 生物信息学 色谱法 化学 生物 生物化学
作者
Ujjwal Mukund Mahajan,Bettina Oehrle,Simon Sirtl,Ahmed Alnatsha,Elisabetta Goni,Ivonne Regel,Georg Beyer,Marlies Vornhülz,Jakob Vielhauer,Ansgar M. Chromik,M. Bahra,Fritz Klein,Waldemar Uhl,Tim Fahlbusch,Marius Distler,Jürgen Weitz,Robert Grützmann,Christian Pilarsky,Frank Ulrich Weiß,Márk Ádám,John P. Neoptolemos,Holger Kalthoff,Roland Rad,Nicole Christiansen,Bianca Bethan,Beate Kamlage,Markus M. Lerch,Julia Mayerle
出处
期刊:Gastroenterology [Elsevier]
卷期号:163 (5): 1407-1422 被引量:16
标识
DOI:10.1053/j.gastro.2022.07.047
摘要

Background & AimsPancreatic ductal adenocarcinoma cancer (PDAC) is a highly lethal malignancy requiring efficient detection when the primary tumor is still resectable. We previously developed the MxPancreasScore comprising 9 analytes and serum carbohydrate antigen 19-9 (CA19-9), achieving an accuracy of 90.6%. The necessity for 5 different analytical platforms and multiple analytical runs, however, hindered clinical applicability. We therefore aimed to develop a simpler single-analytical run, single-platform diagnostic signature.MethodsWe evaluated 941 patients (PDAC, 356; chronic pancreatitis [CP], 304; nonpancreatic disease, 281) in 3 multicenter independent tests, and identification (ID) and validation cohort 1 (VD1) and 2 (VD2) were evaluated. Targeted quantitative plasma metabolite analysis was performed on a liquid chromatography–tandem mass spectrometry platform. A machine learning–aided algorithm identified an improved (i-Metabolic) and minimalistic metabolic (m-Metabolic) signatures, and compared them for performance.ResultsThe i-Metabolic Signature, (12 analytes plus CA19-9) distinguished PDAC from CP with area under the curve (95% confidence interval) of 97.2% (97.1%-97.3%), 93.5% (93.4%-93.7%), and 92.2% (92.1%-92.3%) in the ID, VD1, and VD2 cohorts, respectively. In the VD2 cohort, the m-Metabolic signature (4 analytes plus CA19-9) discriminated PDAC from CP with a sensitivity of 77.3% and specificity of 89.6%, with an overall accuracy of 82.4%. For the subset of 45 patients with PDAC with resectable stages IA-IIB tumors, the sensitivity, specificity, and accuracy were 73.2%, 89.6%, and 82.7%, respectively; for those with detectable CA19-9 >2 U/mL, 81.6%, 88.7%, and 84.5%, respectively; and for those with CA19-9 <37 U/mL, 39.7%, 94.1%, and 76.3%, respectively.ConclusionsThe single-platform, single-run, m-Metabolic signature of just 4 metabolites used in combination with serum CA19-9 levels is an innovative accurate diagnostic tool for PDAC at the time of clinical presentation, warranting further large-scale evaluation. Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly lethal malignancy requiring efficient detection when the primary tumor is still resectable. We previously developed the MxPancreasScore comprising 9 analytes and serum carbohydrate antigen 19-9 (CA19-9), achieving an accuracy of 90.6%. The necessity for 5 different analytical platforms and multiple analytical runs, however, hindered clinical applicability. We therefore aimed to develop a simpler single-analytical run, single-platform diagnostic signature. We evaluated 941 patients (PDAC, 356; chronic pancreatitis [CP], 304; nonpancreatic disease, 281) in 3 multicenter independent tests, and identification (ID) and validation cohort 1 (VD1) and 2 (VD2) were evaluated. Targeted quantitative plasma metabolite analysis was performed on a liquid chromatography–tandem mass spectrometry platform. A machine learning–aided algorithm identified an improved (i-Metabolic) and minimalistic metabolic (m-Metabolic) signatures, and compared them for performance. The i-Metabolic Signature, (12 analytes plus CA19-9) distinguished PDAC from CP with area under the curve (95% confidence interval) of 97.2% (97.1%-97.3%), 93.5% (93.4%-93.7%), and 92.2% (92.1%-92.3%) in the ID, VD1, and VD2 cohorts, respectively. In the VD2 cohort, the m-Metabolic signature (4 analytes plus CA19-9) discriminated PDAC from CP with a sensitivity of 77.3% and specificity of 89.6%, with an overall accuracy of 82.4%. For the subset of 45 patients with PDAC with resectable stages IA-IIB tumors, the sensitivity, specificity, and accuracy were 73.2%, 89.6%, and 82.7%, respectively; for those with detectable CA19-9 >2 U/mL, 81.6%, 88.7%, and 84.5%, respectively; and for those with CA19-9 <37 U/mL, 39.7%, 94.1%, and 76.3%, respectively. The single-platform, single-run, m-Metabolic signature of just 4 metabolites used in combination with serum CA19-9 levels is an innovative accurate diagnostic tool for PDAC at the time of clinical presentation, warranting further large-scale evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
程志杰应助可靠的寒风采纳,获得20
1秒前
1秒前
11122333完成签到,获得积分10
2秒前
2秒前
英俊的铭应助wjwless采纳,获得10
3秒前
3秒前
sunzhuxi发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
SUS完成签到,获得积分10
6秒前
威武道罡完成签到,获得积分10
6秒前
7秒前
8秒前
MYZ发布了新的文献求助10
8秒前
SUS发布了新的文献求助10
9秒前
9秒前
龙龙不卷发布了新的文献求助10
9秒前
一二发布了新的文献求助10
12秒前
Choi发布了新的文献求助10
13秒前
14秒前
笑笑发布了新的文献求助10
14秒前
烟花应助May采纳,获得10
15秒前
15秒前
马家辉发布了新的文献求助10
15秒前
shan完成签到,获得积分10
16秒前
Ava应助超级鸵鸟采纳,获得10
17秒前
18秒前
善学以致用应助追寻纲采纳,获得10
18秒前
寻道图强应助xiexie采纳,获得50
18秒前
HAO关闭了HAO文献求助
20秒前
shan发布了新的文献求助10
20秒前
21秒前
Lee发布了新的文献求助10
22秒前
正直的夏真完成签到 ,获得积分10
22秒前
科研人员完成签到 ,获得积分10
23秒前
卡卡完成签到,获得积分10
24秒前
25秒前
27秒前
27秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260808
求助须知:如何正确求助?哪些是违规求助? 2901913
关于积分的说明 8318098
捐赠科研通 2571665
什么是DOI,文献DOI怎么找? 1397111
科研通“疑难数据库(出版商)”最低求助积分说明 653655
邀请新用户注册赠送积分活动 632178