红曲霉
Cas9
基因组编辑
食品科学
颜料
清脆的
生物
化学
遗传学
发酵
基因
有机化学
作者
Hye Ree Yoon,Suk Jung Han,Seung Chul Shin,Su Cheong Yeom,Hyo Jin Kim
标识
DOI:10.1016/j.foodres.2023.112651
摘要
Monascus pigments have various food industry applications and are pharmacologically active. Genome sequencing-based clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology has been implemented to increase pigment production in Monascus. To increase pigment production in M. ruber KACC46666, the CRISPR/Cas9 system was used to introduce mutations in two negative regulator genes (MpigI and MpigI′), among other genes involved in the Monascus pigment biosynthesis pathway. Dual single-guide RNAs were constructed to inactivate MpigI and MpigI′. After CRISPR/Cas9 inactivation, yellow, orange, and red pigment expression in the resulting △MpigI16-7 strain (among several Cas9-mediated mutants studied) was 2.5-, 12.4-, and 18.5-fold, respectively, higher than that in the wild-type strain. This study provides valuable information regarding CRISPR-guided metabolic engineering for natural colorant production.
科研通智能强力驱动
Strongly Powered by AbleSci AI