AlzyFinder: A Machine-Learning-Driven Platform for Ligand-Based Virtual Screening and Network Pharmacology

虚拟筛选 计算机科学 药理学 计算生物学 人工智能 机器学习 神经科学 药物发现 医学 心理学 生物信息学 生物
作者
Jessica Valero-Rojas,Camilo Andrés Ramírez-Sánchez,Laura Pacheco-Paternina,Paulina Valenzuela-Hormazábal,Fernanda I. Saldívar‐González,Paula Santana,Janneth González,Tatiana Gutiérrez-Bunster,Alejandro Valdés-Jiménez,David Ramírez
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01481
摘要

Alzheimer's disease (AD), a prevalent neurodegenerative disorder, presents significant challenges in drug development due to its multifactorial nature and complex pathophysiology. The AlzyFinder Platform, introduced in this study, addresses these challenges by providing a comprehensive, free web-based tool for parallel ligand-based virtual screening and network pharmacology, specifically targeting over 85 key proteins implicated in AD. This innovative approach is designed to enhance the identification and analysis of potential multitarget ligands, thereby accelerating the development of effective therapeutic strategies against AD. AlzyFinder Platform incorporates machine learning models to facilitate the ligand-based virtual screening process. These models, built with the XGBoost algorithm and optimized through Optuna, were meticulously trained and validated using robust methodologies to ensure high predictive accuracy. Validation included extensive testing with active, inactive, and decoy molecules, demonstrating the platform's efficacy in distinguishing active compounds. The models are evaluated based on balanced accuracy, precision, and F1 score metrics. A unique soft-voting ensemble approach is utilized to refine the classification process, integrating the strengths of individual models. This methodological framework enables a comprehensive analysis of interaction data, which is presented in multiple formats such as tables, heat maps, and interactive Ligand-Protein Interaction networks, thus enhancing the visualization and analysis of drug-protein interactions. AlzyFinder was applied to screen five molecules recently reported (and not used to train or validate the ML models) as active compounds against five key AD targets. The platform demonstrated its efficacy by accurately predicting all five molecules as true positives with a probability greater than 0.70. This result underscores the platform's capability in identifying potential therapeutic compounds with high precision. In conclusion, AlzyFinder's innovative approach extends beyond traditional virtual screening by incorporating network pharmacology analysis, thus providing insights into the systemic actions of drug candidates. This feature allows for the exploration of ligand-protein and protein-protein interactions and their extensions, offering a comprehensive view of potential therapeutic impacts. As the first open-access platform of its kind, AlzyFinder stands as a valuable resource for the AD research community, available at http://www.alzyfinder-platform.udec.cl with supporting data and scripts accessible via GitHub https://github.com/ramirezlab/AlzyFinder.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
光亮语梦完成签到 ,获得积分10
3秒前
4秒前
善学以致用应助JuJu采纳,获得10
5秒前
小文完成签到,获得积分20
5秒前
完美世界应助Li采纳,获得10
5秒前
6秒前
7秒前
MQ&FF应助wangkeke采纳,获得10
8秒前
dwd完成签到 ,获得积分10
9秒前
小华发布了新的文献求助10
12秒前
qizhang发布了新的文献求助10
12秒前
Doyle完成签到,获得积分10
13秒前
cdercder应助······采纳,获得20
13秒前
巩大帅完成签到 ,获得积分10
14秒前
笑点低的幻珊完成签到,获得积分10
14秒前
对白完成签到,获得积分10
16秒前
滕皓轩发布了新的文献求助10
18秒前
巩大帅关注了科研通微信公众号
19秒前
李健应助Dave采纳,获得10
21秒前
21秒前
慕青应助Lebranium采纳,获得10
22秒前
大大怪完成签到,获得积分20
23秒前
打打应助lyn采纳,获得10
24秒前
Raven682发布了新的文献求助20
24秒前
JamesPei应助哈哈采纳,获得10
25秒前
25秒前
mmyhn发布了新的文献求助10
25秒前
25秒前
素隐发布了新的文献求助10
25秒前
CipherSage应助sci一点就通采纳,获得10
27秒前
科研通AI5应助大大怪采纳,获得10
27秒前
ddd发布了新的文献求助10
28秒前
28秒前
泓泽发布了新的文献求助10
28秒前
29秒前
dududu发布了新的文献求助10
30秒前
31秒前
欲望被鬼应助yy采纳,获得20
31秒前
32秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670364
求助须知:如何正确求助?哪些是违规求助? 3227602
关于积分的说明 9776258
捐赠科研通 2937754
什么是DOI,文献DOI怎么找? 1609605
邀请新用户注册赠送积分活动 760402
科研通“疑难数据库(出版商)”最低求助积分说明 735836