亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Radiomic Nomogram for Predicting Axillary Lymph Node Metastasis in Patients with Breast Cancer

列线图 乳腺癌 医学 接收机工作特性 逻辑回归 置信区间 肿瘤科 淋巴结 放射科 内科学 癌症
作者
Yusi Chen,Jinping Li,Jin Zhang,Zhuo Yu,Huijie Jiang
出处
期刊:Academic Radiology [Elsevier]
卷期号:31 (3): 788-799 被引量:5
标识
DOI:10.1016/j.acra.2023.10.026
摘要

Rationale and ObjectivesThe detection of axillary lymph node metastasis (ALNM) in patients with breast cancer is a crucial determinant in the decision-making process for axillary surgery and potential therapies. The objective of this study was to develop and validate a radiomics nomogram that integrates radiomics features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with clinical factors to predict ALNM in patients with breast cancer.Materials and MethodsA total of 177 patients with breast cancer were randomly divided into a training set (n = 123) and a validation set (n = 54) using a 7:3 ratio. From the DCE-MRI images, 2818 radiomics features were extracted from the primary tumor and axillary lymph node (ALN). Subsequently, optimal features were selected through the least absolute shrinkage and selection operator algorithm to construct the Radscore. Clinical factors were identified using univariate logistic regression analysis and included in a multivariate logistic regression analysis. Using the Radscore and clinical factors, a radiomics nomogram was developed using the Support Vector Machine method. The predicting efficacy of our model was visually appraised utilizing a receiver operator characteristic (ROC) curve, while its clinical application and predictive accuracy were assessed through decision curve analysis (DCA) and calibration curves, respectively.ResultsThe results revealed Ki67, multifocality, and MRI-reported ALN status as independent risk factors for ALNM. The radiomics nomogram demonstrated good calibration and discrimination with areas under the ROC curve of 0.92 (95% confidence interval [CI], 0.88–0.97) in the training set and 0.90 (95% CI, 0.72–0.90) in the validation set. DCA revealed the clinical usefulness of the radiomics nomogram.ConclusionThe DCE-MRI-based radiomics nomogram is a reliable tool for assessing ALNM in patients with breast cancer. The detection of axillary lymph node metastasis (ALNM) in patients with breast cancer is a crucial determinant in the decision-making process for axillary surgery and potential therapies. The objective of this study was to develop and validate a radiomics nomogram that integrates radiomics features from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with clinical factors to predict ALNM in patients with breast cancer. A total of 177 patients with breast cancer were randomly divided into a training set (n = 123) and a validation set (n = 54) using a 7:3 ratio. From the DCE-MRI images, 2818 radiomics features were extracted from the primary tumor and axillary lymph node (ALN). Subsequently, optimal features were selected through the least absolute shrinkage and selection operator algorithm to construct the Radscore. Clinical factors were identified using univariate logistic regression analysis and included in a multivariate logistic regression analysis. Using the Radscore and clinical factors, a radiomics nomogram was developed using the Support Vector Machine method. The predicting efficacy of our model was visually appraised utilizing a receiver operator characteristic (ROC) curve, while its clinical application and predictive accuracy were assessed through decision curve analysis (DCA) and calibration curves, respectively. The results revealed Ki67, multifocality, and MRI-reported ALN status as independent risk factors for ALNM. The radiomics nomogram demonstrated good calibration and discrimination with areas under the ROC curve of 0.92 (95% confidence interval [CI], 0.88–0.97) in the training set and 0.90 (95% CI, 0.72–0.90) in the validation set. DCA revealed the clinical usefulness of the radiomics nomogram. The DCE-MRI-based radiomics nomogram is a reliable tool for assessing ALNM in patients with breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助芷毓_Tian采纳,获得10
8秒前
17秒前
芷毓_Tian发布了新的文献求助10
23秒前
李健应助cjh采纳,获得10
24秒前
矢思然完成签到,获得积分10
42秒前
科研通AI2S应助科研通管家采纳,获得10
43秒前
英姑应助Li采纳,获得10
51秒前
Sandy发布了新的文献求助10
1分钟前
Cindy发布了新的文献求助10
1分钟前
HelloWorld发布了新的文献求助10
1分钟前
Sandy发布了新的文献求助10
2分钟前
2分钟前
cjh发布了新的文献求助10
2分钟前
英俊的铭应助科研通管家采纳,获得10
2分钟前
cjh完成签到,获得积分20
2分钟前
小蘑菇应助Sandy采纳,获得10
2分钟前
ln完成签到,获得积分20
3分钟前
科研通AI2S应助ln采纳,获得10
3分钟前
4分钟前
5分钟前
科研通AI2S应助ln采纳,获得10
5分钟前
王讯完成签到,获得积分10
5分钟前
5分钟前
yuaner发布了新的文献求助10
5分钟前
haralee完成签到 ,获得积分10
6分钟前
Miianlli完成签到 ,获得积分10
6分钟前
欧阳蛋蛋鸡完成签到 ,获得积分10
6分钟前
阿巴阿巴发布了新的文献求助10
7分钟前
Hello应助阿巴阿巴采纳,获得10
7分钟前
7分钟前
阿巴阿巴发布了新的文献求助10
7分钟前
瘦瘦绮完成签到 ,获得积分10
7分钟前
阿巴阿巴发布了新的文献求助10
8分钟前
8分钟前
Sandy发布了新的文献求助10
8分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
8分钟前
yuaner发布了新的文献求助10
8分钟前
10分钟前
Easypass完成签到 ,获得积分10
10分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379134
求助须知:如何正确求助?哪些是违规求助? 2994646
关于积分的说明 8759879
捐赠科研通 2679194
什么是DOI,文献DOI怎么找? 1467566
科研通“疑难数据库(出版商)”最低求助积分说明 678713
邀请新用户注册赠送积分活动 670412