High-resolution strain-level microbiome composition analysis from short reads

基因组 拉伤 计算生物学 生物 微生物群 作文(语言) 序列分析 遗传学 基因 语言学 哲学 解剖
作者
Herui Liao,Yongxin Ji,Yanni Sun
出处
期刊:Microbiome [Springer Nature]
卷期号:11 (1) 被引量:1
标识
DOI:10.1186/s40168-023-01615-w
摘要

Abstract Background Bacterial strains under the same species can exhibit different biological properties, making strain-level composition analysis an important step in understanding the dynamics of microbial communities. Metagenomic sequencing has become the major means for probing the microbial composition in host-associated or environmental samples. Although there are a plethora of composition analysis tools, they are not optimized to address the challenges in strain-level analysis: highly similar strain genomes and the presence of multiple strains under one species in a sample. Thus, this work aims to provide a high-resolution and more accurate strain-level analysis tool for short reads. Results In this work, we present a new strain-level composition analysis tool named StrainScan that employs a novel tree-based k -mers indexing structure to strike a balance between the strain identification accuracy and the computational complexity. We tested StrainScan extensively on a large number of simulated and real sequencing data and benchmarked StrainScan with popular strain-level analysis tools including Krakenuniq, StrainSeeker, Pathoscope2, Sigma, StrainGE, and StrainEst. The results show that StrainScan has higher accuracy and resolution than the state-of-the-art tools on strain-level composition analysis. It improves the F1 score by 20% in identifying multiple strains at the strain level. Conclusions By using a novel k -mer indexing structure, StrainScan is able to provide strain-level analysis with higher resolution than existing tools, enabling it to return more informative strain composition analysis in one sample or across multiple samples. StrainScan takes short reads and a set of reference strains as input and its source codes are freely available at https://github.com/liaoherui/StrainScan .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老师心腹大患完成签到,获得积分10
刚刚
1秒前
1秒前
小鹿完成签到,获得积分10
1秒前
柏不斜发布了新的文献求助10
1秒前
2秒前
3秒前
林林完成签到 ,获得积分10
4秒前
核桃花生奶兔完成签到 ,获得积分10
5秒前
唐展通发布了新的文献求助10
6秒前
6秒前
111发布了新的文献求助10
7秒前
刻苦的荆完成签到,获得积分10
7秒前
可爱的函函应助周芷卉采纳,获得10
8秒前
沉静若山完成签到 ,获得积分10
14秒前
14秒前
小蜜峰儿完成签到,获得积分10
14秒前
乐乐应助柏不斜采纳,获得10
14秒前
16秒前
wyn发布了新的文献求助10
17秒前
17秒前
qq发布了新的文献求助10
17秒前
18秒前
飞跃完成签到 ,获得积分10
19秒前
20秒前
冯丽雪发布了新的文献求助10
23秒前
白洛完成签到,获得积分20
24秒前
小饼干完成签到,获得积分10
24秒前
胡图图发布了新的文献求助10
25秒前
NexusExplorer应助整齐星月采纳,获得10
25秒前
26秒前
唐展通完成签到,获得积分10
28秒前
大个应助冯丽雪采纳,获得10
29秒前
英俊的铭应助科研通管家采纳,获得10
29秒前
Akim应助科研通管家采纳,获得10
29秒前
充电宝应助科研通管家采纳,获得10
30秒前
一一应助科研通管家采纳,获得80
30秒前
完美世界应助科研通管家采纳,获得10
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
SciGPT应助科研通管家采纳,获得30
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079