亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-resolution strain-level microbiome composition analysis from short reads

基因组 拉伤 计算生物学 生物 微生物群 作文(语言) 序列分析 遗传学 基因 语言学 解剖 哲学
作者
Herui Liao,Yongxin Ji,Yanni Sun
出处
期刊:Microbiome [Springer Nature]
卷期号:11 (1) 被引量:1
标识
DOI:10.1186/s40168-023-01615-w
摘要

Abstract Background Bacterial strains under the same species can exhibit different biological properties, making strain-level composition analysis an important step in understanding the dynamics of microbial communities. Metagenomic sequencing has become the major means for probing the microbial composition in host-associated or environmental samples. Although there are a plethora of composition analysis tools, they are not optimized to address the challenges in strain-level analysis: highly similar strain genomes and the presence of multiple strains under one species in a sample. Thus, this work aims to provide a high-resolution and more accurate strain-level analysis tool for short reads. Results In this work, we present a new strain-level composition analysis tool named StrainScan that employs a novel tree-based k -mers indexing structure to strike a balance between the strain identification accuracy and the computational complexity. We tested StrainScan extensively on a large number of simulated and real sequencing data and benchmarked StrainScan with popular strain-level analysis tools including Krakenuniq, StrainSeeker, Pathoscope2, Sigma, StrainGE, and StrainEst. The results show that StrainScan has higher accuracy and resolution than the state-of-the-art tools on strain-level composition analysis. It improves the F1 score by 20% in identifying multiple strains at the strain level. Conclusions By using a novel k -mer indexing structure, StrainScan is able to provide strain-level analysis with higher resolution than existing tools, enabling it to return more informative strain composition analysis in one sample or across multiple samples. StrainScan takes short reads and a set of reference strains as input and its source codes are freely available at https://github.com/liaoherui/StrainScan .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
annazhang完成签到 ,获得积分10
1秒前
斯文败类应助科研通管家采纳,获得10
13秒前
纯真如松完成签到,获得积分10
14秒前
aaa5a123完成签到 ,获得积分10
16秒前
nuo发布了新的文献求助10
46秒前
49秒前
白白白发布了新的文献求助10
52秒前
56秒前
李爱国应助昏睡的向真采纳,获得30
58秒前
nuo完成签到,获得积分20
1分钟前
白白白完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Caleb完成签到,获得积分10
1分钟前
1分钟前
852应助当晚星散落采纳,获得10
1分钟前
1分钟前
1分钟前
Laoxing258发布了新的文献求助10
1分钟前
1分钟前
小二郎应助石榴汁的书采纳,获得10
1分钟前
发篇Sci不过分吧完成签到,获得积分10
1分钟前
酷酷海豚完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
abc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
abc应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
我是老大应助Laoxing258采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
FAYE发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755072
求助须知:如何正确求助?哪些是违规求助? 5491124
关于积分的说明 15380800
捐赠科研通 4893386
什么是DOI,文献DOI怎么找? 2631982
邀请新用户注册赠送积分活动 1579839
关于科研通互助平台的介绍 1535675