High-resolution strain-level microbiome composition analysis from short reads

基因组 拉伤 计算生物学 生物 微生物群 作文(语言) 序列分析 遗传学 基因 语言学 解剖 哲学
作者
Herui Liao,Yongxin Ji,Yanni Sun
出处
期刊:Microbiome [BioMed Central]
卷期号:11 (1) 被引量:1
标识
DOI:10.1186/s40168-023-01615-w
摘要

Abstract Background Bacterial strains under the same species can exhibit different biological properties, making strain-level composition analysis an important step in understanding the dynamics of microbial communities. Metagenomic sequencing has become the major means for probing the microbial composition in host-associated or environmental samples. Although there are a plethora of composition analysis tools, they are not optimized to address the challenges in strain-level analysis: highly similar strain genomes and the presence of multiple strains under one species in a sample. Thus, this work aims to provide a high-resolution and more accurate strain-level analysis tool for short reads. Results In this work, we present a new strain-level composition analysis tool named StrainScan that employs a novel tree-based k -mers indexing structure to strike a balance between the strain identification accuracy and the computational complexity. We tested StrainScan extensively on a large number of simulated and real sequencing data and benchmarked StrainScan with popular strain-level analysis tools including Krakenuniq, StrainSeeker, Pathoscope2, Sigma, StrainGE, and StrainEst. The results show that StrainScan has higher accuracy and resolution than the state-of-the-art tools on strain-level composition analysis. It improves the F1 score by 20% in identifying multiple strains at the strain level. Conclusions By using a novel k -mer indexing structure, StrainScan is able to provide strain-level analysis with higher resolution than existing tools, enabling it to return more informative strain composition analysis in one sample or across multiple samples. StrainScan takes short reads and a set of reference strains as input and its source codes are freely available at https://github.com/liaoherui/StrainScan .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛虫完成签到,获得积分10
刚刚
妞妞发布了新的文献求助10
刚刚
刚刚
鹏鹏发布了新的文献求助10
刚刚
时567完成签到,获得积分10
1秒前
暖暖发布了新的文献求助30
1秒前
Ning发布了新的文献求助10
1秒前
Joanna完成签到 ,获得积分10
3秒前
czp发布了新的文献求助10
3秒前
blm发布了新的文献求助10
3秒前
钱来完成签到,获得积分10
4秒前
果实发布了新的文献求助10
4秒前
烟花应助heart采纳,获得30
4秒前
4秒前
thremo完成签到,获得积分10
5秒前
霸气小欧发布了新的文献求助20
5秒前
小李子完成签到,获得积分10
5秒前
科研虫儿完成签到,获得积分10
6秒前
6秒前
华仔应助PPPPPP采纳,获得10
6秒前
7秒前
鹏鹏完成签到,获得积分10
8秒前
8秒前
Sunsets完成签到 ,获得积分10
9秒前
10秒前
10秒前
10秒前
bkagyin应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
BrillSpikes完成签到,获得积分10
10秒前
李爱国应助科研通管家采纳,获得10
10秒前
搜集达人应助oceana采纳,获得10
10秒前
贰拾完成签到,获得积分20
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
搜集达人应助科研通管家采纳,获得10
10秒前
华仔应助科研通管家采纳,获得10
10秒前
上官若男应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960721
求助须知:如何正确求助?哪些是违规求助? 3506928
关于积分的说明 11132948
捐赠科研通 3239182
什么是DOI,文献DOI怎么找? 1790081
邀请新用户注册赠送积分活动 872130
科研通“疑难数据库(出版商)”最低求助积分说明 803128