Integration of autoencoder and graph convolutional network for predicting breast cancer drug response

自编码 药物反应 乳腺癌 计算机科学 图形 人工智能 药品 计算生物学 机器学习 模式识别(心理学) 癌症 生物 医学 理论计算机科学 内科学 深度学习 药理学
作者
V. Abinas,U. Abhinav,E. M. Haneem,A. Vishnusankar,K. A. Abdul Nazeer
出处
期刊:Journal of Bioinformatics and Computational Biology [Imperial College Press]
卷期号:22 (03)
标识
DOI:10.1142/s0219720024500136
摘要

Background and objectives: Breast cancer is the most prevalent type of cancer among women. The effectiveness of anticancer pharmacological therapy may get adversely affected by tumor heterogeneity that includes genetic and transcriptomic features. This leads to clinical variability in patient response to therapeutic drugs. Anticancer drug design and cancer understanding require precise identification of cancer drug responses. The performance of drug response prediction models can be improved by integrating multi-omics data and drug structure data. Methods: In this paper, we propose an Autoencoder (AE) and Graph Convolutional Network (AGCN) for drug response prediction, which integrates multi-omics data and drug structure data. Specifically, we first converted the high dimensional representation of each omic data to a lower dimensional representation using an AE for each omic data set. Subsequently, these individual features are combined with drug structure data obtained using a Graph Convolutional Network and given to a Convolutional Neural Network to calculate IC[Formula: see text] values for every combination of cell lines and drugs. Then a threshold IC[Formula: see text] value is obtained for each drug by performing K-means clustering of their known IC[Formula: see text] values. Finally, with the help of this threshold value, cell lines are classified as either sensitive or resistant to each drug. Results: Experimental results indicate that AGCN has an accuracy of 0.82 and performs better than many existing methods. In addition to that, we have done external validation of AGCN using data taken from The Cancer Genome Atlas (TCGA) clinical database, and we got an accuracy of 0.91. Conclusion: According to the results obtained, concatenating multi-omics data with drug structure data using AGCN for drug response prediction tasks greatly improves the accuracy of the prediction task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Can完成签到,获得积分10
刚刚
盼盼完成签到,获得积分10
刚刚
长孙归尘完成签到 ,获得积分10
刚刚
1秒前
漂亮夏兰完成签到 ,获得积分10
1秒前
浅斟低唱发布了新的文献求助20
1秒前
啊鲤完成签到,获得积分10
1秒前
小灰灰发布了新的文献求助10
1秒前
林林林林完成签到,获得积分10
1秒前
fool完成签到,获得积分10
1秒前
Ava应助游羽采纳,获得10
1秒前
隐形的乐枫完成签到,获得积分10
2秒前
流星雨完成签到 ,获得积分10
2秒前
万能图书馆应助木子采纳,获得10
2秒前
辞暮完成签到,获得积分10
4秒前
4秒前
Loooong应助TS采纳,获得10
4秒前
5秒前
LZQ应助wxnice采纳,获得10
6秒前
JamesPei应助小黄采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
shawn_89完成签到,获得积分10
6秒前
6秒前
贤yu完成签到,获得积分10
7秒前
7秒前
7秒前
666完成签到,获得积分10
7秒前
冰刀完成签到,获得积分10
7秒前
许哲完成签到,获得积分10
7秒前
tony完成签到,获得积分10
8秒前
8秒前
zzznznnn发布了新的文献求助100
9秒前
Vicky完成签到 ,获得积分10
9秒前
9秒前
笨小孩完成签到,获得积分10
10秒前
fsw发布了新的文献求助10
11秒前
体贴的小天鹅完成签到,获得积分10
11秒前
宫冷雁完成签到,获得积分10
11秒前
暖羊羊Y完成签到 ,获得积分10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3661303
求助须知:如何正确求助?哪些是违规求助? 3222367
关于积分的说明 9745047
捐赠科研通 2931980
什么是DOI,文献DOI怎么找? 1605350
邀请新用户注册赠送积分活动 757854
科研通“疑难数据库(出版商)”最低求助积分说明 734569