计算生物学
分类器(UML)
DNA
计算机科学
生物
人工智能
遗传学
作者
Linlin Yang,Qian Tang,Mingzhi Zhang,Yuan Tian,Xiaoxing Chen,Rui Xu,Qian Ma,Pei Guo,Chao Zhang,Da Han
标识
DOI:10.1038/s41467-024-48869-y
摘要
Abstract Molecular computing is an emerging paradigm that plays an essential role in data storage, bio-computation, and clinical diagnosis with the future trends of more efficient computing scheme, higher modularity with scaled-up circuity and stronger tolerance of corrupted inputs in a complex environment. Towards these goals, we construct a spatially localized, DNA integrated circuits-based classifier (DNA IC-CLA) that can perform neuromorphic architecture-based computation at a molecular level for medical diagnosis. The DNA-based classifier employs a two-dimensional DNA origami as the framework and localized processing modules as the in-frame computing core to execute arithmetic operations (e.g. multiplication, addition, subtraction) for efficient linear classification of complex patterns of miRNA inputs. We demonstrate that the DNA IC-CLA enables accurate cancer diagnosis in a faster (about 3 h) and more effective manner in synthetic and clinical samples compared to those of the traditional freely diffusible DNA circuits. We believe that this all-in-one DNA-based classifier can exhibit more applications in biocomputing in cells and medical diagnostics.
科研通智能强力驱动
Strongly Powered by AbleSci AI