Network traffic classification based on federated semi-supervised learning

计算机科学 交通分类 人工智能 监督学习 机器学习 计算机网络 人工神经网络 服务质量
作者
Zixuan Wang,Zeyi Li,Mengyi Fu,YingChun Ye,Pan Wang
出处
期刊:Journal of Systems Architecture [Elsevier]
卷期号:149: 103091-103091 被引量:5
标识
DOI:10.1016/j.sysarc.2024.103091
摘要

Traffic Classification (TC) has been applied to a wide range of applications, from security monitoring to quality of service (QoS) provisioning in network Internet Service Providers (ISPs). In recent years, many researchers have applied Machine Learning (ML) or Deep Learning (DL) to TC, namely AI-TC. However, AI-TC methods face significant challenges, including high data dependency, exhaustively costly traffic labeling, and network subscribers' privacy. This paper proposes a TC framework for smart home networks using Federated Learning (FL) that protects traffic data privacy by performing local training and inference of TC models. Firstly, we design a DPI-based traffic labeling method on edge home gateways as FL nodes, which enables these nodes to have data labeling capability while protecting data privacy. Then, a semi-supervised TC model based on an autoencoder (AE) is proposed to reduce the dependence of the model on labeled traffic samples. Finally, an XAI-based method is utilized to interpret the model to ensure its explainability. We validate the proposed method on public and real datasets using benchmarking methods. The experimental results show that the method can achieve high performance using a small number of samples while protecting data privacy and improving the model's credibility. Experimental code can be found in the following url: https://github.com/PrinceXuan12138/HGW-TC-Experimental-code.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
weizhao发布了新的文献求助10
1秒前
soong0330完成签到,获得积分10
1秒前
wangli发布了新的文献求助10
1秒前
Friday发布了新的文献求助10
1秒前
空曲发布了新的文献求助10
1秒前
WUWUWU发布了新的文献求助10
2秒前
qingshan完成签到,获得积分10
4秒前
宁寻凝发布了新的文献求助10
4秒前
Akim应助zai采纳,获得10
4秒前
6秒前
yi完成签到,获得积分10
6秒前
7秒前
8秒前
qwf发布了新的文献求助10
9秒前
9秒前
10秒前
Ava应助weizhao采纳,获得10
10秒前
cocolu应助寒冷的逍遥采纳,获得10
11秒前
斯文败类应助空曲采纳,获得10
11秒前
11秒前
淡淡十三发布了新的文献求助10
12秒前
852应助来了来了采纳,获得10
14秒前
lzt完成签到 ,获得积分10
14秒前
甜品小匠发布了新的文献求助10
14秒前
14秒前
科研通AI2S应助Bab采纳,获得10
16秒前
言希发布了新的文献求助10
17秒前
17秒前
Li完成签到,获得积分10
18秒前
李大仁发布了新的文献求助10
18秒前
Li完成签到 ,获得积分10
19秒前
20秒前
20秒前
21秒前
21秒前
天天快乐应助李燕君采纳,获得10
22秒前
背后书雪发布了新的文献求助10
22秒前
22秒前
宁寻凝完成签到,获得积分10
23秒前
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297