Cytometry Masked Autoencoder: An Accurate and Interpretable Automated Immunophenotyper

自编码 计算机科学 质量细胞仪 聚类分析 细胞仪 人工智能 免疫分型 注释 分类器(UML) 机器学习 模式识别(心理学) 流式细胞术 深度学习 生物 免疫学 表型 基因 生物化学
作者
Jae‐Sik Kim,Matei Ionita,Matthew Lee,Michelle L. McKeague,Ajinkya Pattekar,Mark M. Painter,Joost Wagenaar,Van Truong,Dylan T. Norton,Divij Mathew,Yonghyun Nam,Sokratis A. Apostolidis,Cynthia Clendenin,Patryk Orzechowski,Sang‐Hyuk Jung,Jakob Woerner,C.A.G. Ittner,Alexandra P. Turner,Mika Esperanza,Thomas Dunn,Nilam S. Mangalmurti,John P. Reilly,Nuala J. Meyer,Carolyn S. Calfee,Kathleen D. Liu,Michael A. Matthy,Lamorna Brown Swigart,Ellen L. Burnham,Jeffrey McKeehan,Sheetal Gandotra,Derek W. Russel,Kevin W. Gibbs,Karl W. Thomas,Harsh Barot,Allison R. Greenplate,E. John Wherry,Dokyoon Kim
标识
DOI:10.1101/2024.02.13.580114
摘要

Abstract High-throughput single-cell cytometry data are crucial for understanding involvement of immune system in diseases and responses to treatment. Traditional methods for annotating cytometry data, specifically manual gating and clustering, face challenges in scalability, robustness, and accuracy. In this study, we propose a cytometry masked autoencoder (cyMAE), which offers an automated solution for immunophenotyping tasks including cell type annotation. The cyMAE model is designed to uphold user-defined cell type definitions, thereby facilitating easier interpretation and cross-study comparisons. The cyMAE model operates on a pre-train and fine-tune approach. In the pre-training phase, cyMAE employs Masked Cytometry Modelling (MCM) to learn relationships between protein markers in immune cells solely based on protein expression, without relying on prior information such as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained cyMAE is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-trained cyMAE addresses the shortcomings of manual gating and clustering methods by providing accurate and interpretable predictions. Through validation across multiple cohorts, we demonstrate that cyMAE effectively identifies co-occurrence patterns of bound labeled antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves the prediction of subject metadata status. Specifically, we evaluated cyMAE for cell type annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction, secondary immune response prediction against COVID-19, and prediction of the infection stage in COVID-19 progression at the subject-level. The introduction of cyMAE marks a significant step forward in immunology research, particularly in large-scale and high-throughput human immune profiling. This approach offers new possibilities for predicting and interpreting cellular-level and subject-level phenotypes in both health and disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wen完成签到,获得积分10
刚刚
开放青旋应助苏silence采纳,获得80
刚刚
1秒前
yu完成签到 ,获得积分10
1秒前
Lucifer完成签到,获得积分10
1秒前
1秒前
1秒前
11完成签到,获得积分10
1秒前
scanker1981完成签到,获得积分10
1秒前
深情安青应助zhaopenghui采纳,获得10
2秒前
小星星完成签到 ,获得积分10
2秒前
600完成签到,获得积分10
2秒前
guohh完成签到,获得积分10
2秒前
3秒前
隐形白开水完成签到,获得积分0
3秒前
sakura完成签到,获得积分10
3秒前
gouqi发布了新的文献求助10
3秒前
饱满的曼寒完成签到,获得积分10
3秒前
CipherSage应助小勇仔采纳,获得10
4秒前
无心科研完成签到,获得积分10
4秒前
4秒前
5秒前
清秀迎彤完成签到 ,获得积分10
5秒前
bkagyin应助空空伊采纳,获得30
5秒前
热心雨南完成签到,获得积分10
5秒前
5秒前
wxxz发布了新的文献求助10
6秒前
CVEN完成签到,获得积分10
6秒前
6秒前
颜靖仇发布了新的文献求助10
6秒前
6秒前
孟寐以求发布了新的文献求助20
6秒前
6秒前
小化发布了新的文献求助20
7秒前
宇宙无敌暴龙战神完成签到,获得积分10
8秒前
嘿嘿应助喔喔糖采纳,获得10
8秒前
yuki完成签到 ,获得积分10
8秒前
8秒前
8秒前
Xin完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5574114
求助须知:如何正确求助?哪些是违规求助? 4660331
关于积分的说明 14729315
捐赠科研通 4600225
什么是DOI,文献DOI怎么找? 2524740
邀请新用户注册赠送积分活动 1495018
关于科研通互助平台的介绍 1465034