Cytometry Masked Autoencoder: An Accurate and Interpretable Automated Immunophenotyper

自编码 计算机科学 质量细胞仪 聚类分析 细胞仪 人工智能 免疫分型 注释 分类器(UML) 机器学习 模式识别(心理学) 流式细胞术 深度学习 生物 免疫学 表型 生物化学 基因
作者
Jae‐Sik Kim,Matei Ionita,Matthew Lee,Michelle L. McKeague,Ajinkya Pattekar,Mark M. Painter,Joost Wagenaar,Van Truong,Dylan T. Norton,Divij Mathew,Yonghyun Nam,Sokratis A. Apostolidis,Cynthia Clendenin,Patryk Orzechowski,Sang‐Hyuk Jung,Jakob Woerner,C.A.G. Ittner,Alexandra P. Turner,Mika Esperanza,Thomas Dunn,Nilam S. Mangalmurti,John P. Reilly,Nuala J. Meyer,Carolyn S. Calfee,Kathleen D. Liu,Michael A. Matthy,Lamorna Brown Swigart,Ellen L. Burnham,Jeffrey McKeehan,Sheetal Gandotra,Derek W. Russel,Kevin W. Gibbs,Karl W. Thomas,Harsh Barot,Allison R. Greenplate,E. John Wherry,Dokyoon Kim
标识
DOI:10.1101/2024.02.13.580114
摘要

Abstract High-throughput single-cell cytometry data are crucial for understanding involvement of immune system in diseases and responses to treatment. Traditional methods for annotating cytometry data, specifically manual gating and clustering, face challenges in scalability, robustness, and accuracy. In this study, we propose a cytometry masked autoencoder (cyMAE), which offers an automated solution for immunophenotyping tasks including cell type annotation. The cyMAE model is designed to uphold user-defined cell type definitions, thereby facilitating easier interpretation and cross-study comparisons. The cyMAE model operates on a pre-train and fine-tune approach. In the pre-training phase, cyMAE employs Masked Cytometry Modelling (MCM) to learn relationships between protein markers in immune cells solely based on protein expression, without relying on prior information such as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained cyMAE is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-trained cyMAE addresses the shortcomings of manual gating and clustering methods by providing accurate and interpretable predictions. Through validation across multiple cohorts, we demonstrate that cyMAE effectively identifies co-occurrence patterns of bound labeled antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves the prediction of subject metadata status. Specifically, we evaluated cyMAE for cell type annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction, secondary immune response prediction against COVID-19, and prediction of the infection stage in COVID-19 progression at the subject-level. The introduction of cyMAE marks a significant step forward in immunology research, particularly in large-scale and high-throughput human immune profiling. This approach offers new possibilities for predicting and interpreting cellular-level and subject-level phenotypes in both health and disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu123发布了新的文献求助10
1秒前
1秒前
ll应助linmo采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
卢静静完成签到,获得积分10
3秒前
4秒前
4秒前
gz000111完成签到,获得积分10
6秒前
打打应助liu123采纳,获得10
6秒前
7秒前
8秒前
YamDaamCaa应助斐然采纳,获得30
8秒前
da_line应助渊思采纳,获得10
8秒前
9秒前
da_line应助江江采纳,获得10
9秒前
登山人完成签到,获得积分10
10秒前
Rondab应助虚度30年采纳,获得10
12秒前
Pt发布了新的文献求助10
12秒前
愉快之槐完成签到,获得积分10
12秒前
tpl完成签到,获得积分10
13秒前
请叫我风吹麦浪应助青岩采纳,获得10
14秒前
CaoJing完成签到 ,获得积分10
15秒前
共享精神应助wbn1212采纳,获得10
15秒前
XU发布了新的文献求助30
16秒前
HHHAN发布了新的文献求助10
17秒前
乖猫要努力应助清脆南蕾采纳,获得10
19秒前
完美世界应助清脆南蕾采纳,获得10
19秒前
传奇3应助清脆南蕾采纳,获得10
19秒前
星辰大海应助清脆南蕾采纳,获得10
19秒前
CodeCraft应助清脆南蕾采纳,获得10
19秒前
19秒前
bubble完成签到 ,获得积分10
20秒前
咕噜坚果完成签到,获得积分10
21秒前
21秒前
葱葱不吃葱完成签到 ,获得积分10
22秒前
22秒前
23秒前
24秒前
peiter发布了新的文献求助10
24秒前
NexusExplorer应助学习的小崽采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578