Cytometry Masked Autoencoder: An Accurate and Interpretable Automated Immunophenotyper

自编码 计算机科学 质量细胞仪 聚类分析 细胞仪 人工智能 免疫分型 注释 分类器(UML) 机器学习 模式识别(心理学) 流式细胞术 深度学习 生物 免疫学 表型 生物化学 基因
作者
Jae‐Sik Kim,Matei Ionita,Matthew Lee,Michelle L. McKeague,Ajinkya Pattekar,Mark M. Painter,Joost Wagenaar,Van Truong,Dylan T. Norton,Divij Mathew,Yonghyun Nam,Sokratis A. Apostolidis,Cynthia Clendenin,Patryk Orzechowski,Sang‐Hyuk Jung,Jakob Woerner,C.A.G. Ittner,Alexandra P. Turner,Mika Esperanza,Thomas Dunn,Nilam S. Mangalmurti,John P. Reilly,Nuala J. Meyer,Carolyn S. Calfee,Kathleen D. Liu,Michael A. Matthy,Lamorna Brown Swigart,Ellen L. Burnham,Jeffrey McKeehan,Sheetal Gandotra,Derek W. Russel,Kevin W. Gibbs,Karl W. Thomas,Harsh Barot,Allison R. Greenplate,E. John Wherry,Dokyoon Kim
标识
DOI:10.1101/2024.02.13.580114
摘要

Abstract High-throughput single-cell cytometry data are crucial for understanding involvement of immune system in diseases and responses to treatment. Traditional methods for annotating cytometry data, specifically manual gating and clustering, face challenges in scalability, robustness, and accuracy. In this study, we propose a cytometry masked autoencoder (cyMAE), which offers an automated solution for immunophenotyping tasks including cell type annotation. The cyMAE model is designed to uphold user-defined cell type definitions, thereby facilitating easier interpretation and cross-study comparisons. The cyMAE model operates on a pre-train and fine-tune approach. In the pre-training phase, cyMAE employs Masked Cytometry Modelling (MCM) to learn relationships between protein markers in immune cells solely based on protein expression, without relying on prior information such as cell identity and cell type-specific marker proteins. Subsequently, the pre-trained cyMAE is fine-tuned on multiple specialized tasks via task-specific supervised learning. The pre-trained cyMAE addresses the shortcomings of manual gating and clustering methods by providing accurate and interpretable predictions. Through validation across multiple cohorts, we demonstrate that cyMAE effectively identifies co-occurrence patterns of bound labeled antibodies, delivers accurate and interpretable cellular immunophenotyping, and improves the prediction of subject metadata status. Specifically, we evaluated cyMAE for cell type annotation and imputation at the cellular-level and SARS-CoV-2 infection prediction, secondary immune response prediction against COVID-19, and prediction of the infection stage in COVID-19 progression at the subject-level. The introduction of cyMAE marks a significant step forward in immunology research, particularly in large-scale and high-throughput human immune profiling. This approach offers new possibilities for predicting and interpreting cellular-level and subject-level phenotypes in both health and disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
DTP发布了新的文献求助10
1秒前
迷路雪曼发布了新的文献求助10
2秒前
想吃榴莲发布了新的文献求助30
4秒前
CodeCraft应助舒心的雨双采纳,获得10
4秒前
pluto应助迷路绿凝采纳,获得10
5秒前
7秒前
8秒前
buno应助研友_nvGY4Z采纳,获得10
9秒前
9秒前
10秒前
fancy发布了新的文献求助10
11秒前
11秒前
木三完成签到,获得积分10
11秒前
12秒前
111111111222完成签到,获得积分10
12秒前
向建发布了新的文献求助10
13秒前
pluto应助va奕采纳,获得10
13秒前
多发paper啊完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
明亮依琴发布了新的文献求助30
14秒前
14秒前
风信子完成签到,获得积分20
14秒前
14秒前
英姑应助学术蝗虫采纳,获得10
15秒前
sjx1116完成签到 ,获得积分10
17秒前
付绒发布了新的文献求助10
17秒前
慕青应助挽风采纳,获得10
18秒前
19秒前
19秒前
20秒前
着急的秋天完成签到,获得积分20
21秒前
21秒前
chHe发布了新的文献求助10
22秒前
22秒前
22秒前
刘yu发布了新的文献求助30
23秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871221
关于积分的说明 8174431
捐赠科研通 2538200
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645783
邀请新用户注册赠送积分活动 619580