材料科学
聚合物
复合材料
表面改性
化学工程
工程类
作者
Hai-Jiao Men,Bing-Jing Huang,Jian‐Chang Li
标识
DOI:10.1021/acsami.3c15243
摘要
Maintaining an excellent force-electric response under cyclic bending at low temperatures is still challenging for resistive-type electrically conductive polymer composite-based pressure sensors. In this study, the effect of low temperature on the fatigue failure of flexible MXene/polymer pressure sensors was systematically investigated through the silane functionalization of MXene nanosheets embedded with different polymer matrixes. The results show that the MXene/polymer interfaces are the primary factors affecting the temperature-dependent bending fatigue of the Cu/MXene/polymer/Cu sensor. Using finite element analysis and theoretical calculations, we reveal that the MXene/polymer interfaces are affected by free volume changes and the molecular chain motion under different temperatures. At room temperature, the well-distributed free volume in the polydimethylsiloxane (PDMS) matrix permits local segmental mobility that promotes the affinity between the polymer and MXene. As the temperature decreases, the free volume in the matrix shrinks with less space left for molecular chains to slide relatively, weakening the polymer/MXene interfacial bonding strength. However, for PDMS/MXene sensors with the interface modified using the silane coupling agent KH550, the nanoconstrained structure formed by strong hydrogen bonds and covalent bonds at the PDMS/MXene interface can hinder the mobility of polymer chains, which greatly helps to dissipate the inter/intrachain friction. It thus alleviates the debonding energy dissipation during cyclic bending at subzero temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI