STFF-SM: Steganalysis Model Based on Spatial and Temporal Feature Fusion for Speech Streams

计算机科学 隐写分析技术 特征(语言学) 模式识别(心理学) 人工智能 隐写术 加权 语音识别 特征提取 嵌入 数据挖掘 语言学 医学 放射科 哲学
作者
Hui Tian,Yiqin Qiu,Wojciech Mazurczyk,Haizhou Li,Zhenxing Qian
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 277-289 被引量:3
标识
DOI:10.1109/taslp.2022.3224295
摘要

The real-time detection of speech steganography in Voice-over-Internet-Protocol (VoIP) scenarios remains an open problem, as it requires steganalysis methods to perform for low-intensity embeddings and short-sample inputs, as well as provide rapid detection results. To address these challenges, this paper presents a novel steganalysis model based on spatial and temporal feature fusion (STFF-SM). Differing from the existing methods, we take both the integer and fractional pitch delays as input, and design subframe-stitch module to organically integrate subframe-wise integer delays and frame-wise fractional pitch delays. Further, we design a spatial fusion module based on pre-activation residual convolution to extract the pitch spatial features and gradually increase their dimensions to discover finer steganographic distortions to enhance the detection effect, where a Group-Squeeze-Weighting block is introduced to alleviate the information loss in the process of increasing the feature dimension. In addition, we design a temporal fusion module to extract pitch temporal features using the stacked LSTM, where a Gated Feed-Forward Network is introduced to learn the interaction between different feature maps while suppressing the features that are not useful for detection. We evaluated the performance of STFF-SM through comprehensive experiments and comparisons with the state-of-the-art solutions. The experimental results demonstrate that STFF-SM can well meet the needs of real-time detection of speech steganography in VoIP streams, and outperforms the existing methods in detection performance, especially with low embedding strengths and short window sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qyy发布了新的文献求助10
刚刚
1秒前
YRY完成签到 ,获得积分10
1秒前
gggyyy发布了新的文献求助10
1秒前
1秒前
活力安南完成签到,获得积分10
2秒前
2秒前
关小乙完成签到,获得积分10
2秒前
moyu123发布了新的社区帖子
3秒前
3秒前
田様应助糖果屋采纳,获得10
3秒前
zg发布了新的文献求助30
3秒前
linggaga完成签到,获得积分10
4秒前
juziyaya发布了新的文献求助10
4秒前
wangjing发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
Loik发布了新的文献求助10
5秒前
关小乙发布了新的文献求助10
6秒前
艺阳完成签到,获得积分10
7秒前
7秒前
8秒前
循环bug完成签到,获得积分10
8秒前
cxy完成签到,获得积分10
8秒前
杰瑞院士发布了新的文献求助10
8秒前
幸福萝发布了新的文献求助10
8秒前
setmefree发布了新的文献求助10
9秒前
llzuo发布了新的文献求助10
9秒前
Wang发布了新的文献求助10
9秒前
9秒前
lvlei发布了新的文献求助30
9秒前
SciGPT应助阿迪采纳,获得10
11秒前
赘婿应助阿迪采纳,获得10
11秒前
华仔应助阿迪采纳,获得10
11秒前
11秒前
JamesPei应助歇儿哒哒采纳,获得10
11秒前
eurus发布了新的文献求助10
13秒前
丘比特应助郑海香采纳,获得10
13秒前
方知发布了新的文献求助10
13秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140965
求助须知:如何正确求助?哪些是违规求助? 2791902
关于积分的说明 7800851
捐赠科研通 2448159
什么是DOI,文献DOI怎么找? 1302441
科研通“疑难数据库(出版商)”最低求助积分说明 626568
版权声明 601226