STFF-SM: Steganalysis Model Based on Spatial and Temporal Feature Fusion for Speech Streams

计算机科学 隐写分析技术 特征(语言学) 模式识别(心理学) 人工智能 隐写术 加权 语音识别 特征提取 嵌入 数据挖掘 医学 语言学 哲学 放射科
作者
Hui Tian,Yiqin Qiu,Wojciech Mazurczyk,Haizhou Li,Zhenxing Qian
出处
期刊:IEEE/ACM transactions on audio, speech, and language processing [Institute of Electrical and Electronics Engineers]
卷期号:31: 277-289 被引量:3
标识
DOI:10.1109/taslp.2022.3224295
摘要

The real-time detection of speech steganography in Voice-over-Internet-Protocol (VoIP) scenarios remains an open problem, as it requires steganalysis methods to perform for low-intensity embeddings and short-sample inputs, as well as provide rapid detection results. To address these challenges, this paper presents a novel steganalysis model based on spatial and temporal feature fusion (STFF-SM). Differing from the existing methods, we take both the integer and fractional pitch delays as input, and design subframe-stitch module to organically integrate subframe-wise integer delays and frame-wise fractional pitch delays. Further, we design a spatial fusion module based on pre-activation residual convolution to extract the pitch spatial features and gradually increase their dimensions to discover finer steganographic distortions to enhance the detection effect, where a Group-Squeeze-Weighting block is introduced to alleviate the information loss in the process of increasing the feature dimension. In addition, we design a temporal fusion module to extract pitch temporal features using the stacked LSTM, where a Gated Feed-Forward Network is introduced to learn the interaction between different feature maps while suppressing the features that are not useful for detection. We evaluated the performance of STFF-SM through comprehensive experiments and comparisons with the state-of-the-art solutions. The experimental results demonstrate that STFF-SM can well meet the needs of real-time detection of speech steganography in VoIP streams, and outperforms the existing methods in detection performance, especially with low embedding strengths and short window sizes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Rondab应助海的呼唤采纳,获得10
刚刚
asdf完成签到,获得积分10
1秒前
ll发布了新的文献求助30
1秒前
顾右发布了新的文献求助10
2秒前
longyuzhu完成签到,获得积分20
3秒前
无花果应助思维隋采纳,获得10
3秒前
3秒前
灵犀完成签到,获得积分10
4秒前
4秒前
5秒前
longyuzhu发布了新的文献求助10
6秒前
丘比特应助单薄的如之采纳,获得10
6秒前
田様应助愤怒的稀采纳,获得10
7秒前
asdf发布了新的文献求助10
7秒前
科研牛马完成签到,获得积分20
9秒前
10秒前
10秒前
10秒前
柠m发布了新的文献求助10
10秒前
淡定的老头完成签到,获得积分10
11秒前
小刘有个大梦想完成签到 ,获得积分10
12秒前
14秒前
科研牛马发布了新的文献求助10
15秒前
16秒前
17秒前
dalian完成签到,获得积分10
17秒前
17秒前
温柔以冬发布了新的文献求助10
17秒前
szzz完成签到,获得积分10
19秒前
英俊的铭应助王星星采纳,获得10
19秒前
zzznznnn发布了新的文献求助10
20秒前
旋转鸡爪子应助大青山采纳,获得10
20秒前
21秒前
科研达人发布了新的文献求助10
21秒前
思维隋发布了新的文献求助10
22秒前
szzz发布了新的文献求助10
22秒前
wy完成签到,获得积分10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070