Multitask Learning for Joint Diagnosis of Multiple Mental Disorders in Resting-State fMRI

计算机科学 聚类分析 功能磁共振成像 人工智能 神经影像学 机器学习 特征(语言学) 静息状态功能磁共振成像 认知 接头(建筑物) 模式识别(心理学) 心理学 神经科学 建筑工程 语言学 哲学 工程类
作者
Zhi-An Huang,Rui Liu,Zexuan Zhu,Kay Chen Tan
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (6): 8161-8175 被引量:16
标识
DOI:10.1109/tnnls.2022.3225179
摘要

Facing the increasing worldwide prevalence of mental disorders, the symptom-based diagnostic criteria struggle to address the urgent public health concern due to the global shortfall in well-qualified professionals. Thanks to the recent advances in neuroimaging techniques, functional magnetic resonance imaging (fMRI) has surfaced as a new solution to characterize neuropathological biomarkers for detecting functional connectivity (FC) anomalies in mental disorders. However, the existing computer-aided diagnosis models for fMRI analysis suffer from unstable performance on large datasets. To address this issue, we propose an efficient multitask learning (MTL) framework for joint diagnosis of multiple mental disorders using resting-state fMRI data. A novel multiobjective evolutionary clustering algorithm is presented to group regions of interests (ROIs) into different clusters for FC pattern analysis. On the optimal clustering solution, the multicluster multigate mixture-of-expert model is used for the final classification by capturing the highly consistent feature patterns among related diagnostic tasks. Extensive simulation experiments demonstrate that the performance of the proposed framework is superior to that of the other state-of-the-art methods. Moreover, the potential for practical application of the framework is also validated in terms of limited computational resources, real-time analysis, and insufficient training data. The proposed model can identify the remarkable interpretative biomarkers associated with specific mental disorders for clinical interpretation analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Joker完成签到,获得积分10
1秒前
123完成签到,获得积分10
1秒前
1秒前
无私的凌丝完成签到,获得积分10
1秒前
磊2024完成签到,获得积分10
1秒前
科研通AI6应助shenkekeyan采纳,获得10
1秒前
1秒前
hzr发布了新的文献求助10
2秒前
魏海龙完成签到,获得积分10
2秒前
2秒前
ATOM发布了新的文献求助10
3秒前
隐形曼青应助wkc采纳,获得10
3秒前
机智的凡梦完成签到,获得积分10
3秒前
打打应助acuter采纳,获得10
3秒前
陌路发布了新的文献求助10
4秒前
4秒前
成就映秋完成签到,获得积分10
4秒前
4秒前
jhz发布了新的文献求助10
4秒前
脂肪肝完成签到,获得积分10
4秒前
usee完成签到,获得积分10
4秒前
瘦瘦电脑完成签到 ,获得积分10
5秒前
5秒前
1313131完成签到,获得积分10
5秒前
小黑完成签到,获得积分10
5秒前
Syk_发布了新的文献求助30
5秒前
FF完成签到 ,获得积分10
6秒前
6秒前
你终硕发布了新的文献求助10
6秒前
自由的冰夏完成签到,获得积分10
6秒前
顾矜应助秋天的菠菜采纳,获得10
6秒前
7秒前
7秒前
鲤鱼寻菡完成签到,获得积分10
7秒前
勤奋的芒果完成签到,获得积分10
7秒前
8秒前
hhh完成签到,获得积分10
8秒前
思源应助黄黄黄采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571570
求助须知:如何正确求助?哪些是违规求助? 3992686
关于积分的说明 12358989
捐赠科研通 3665670
什么是DOI,文献DOI怎么找? 2020248
邀请新用户注册赠送积分活动 1054513
科研通“疑难数据库(出版商)”最低求助积分说明 942077