Detection of illicit accounts over the Ethereum blockchain

计算机科学 数据库事务 洗钱 数字加密货币 网络钓鱼 块链 计算机安全 出版 数据库 业务 财务 操作系统 互联网 广告
作者
Steven Farrugia,Joshua Ellul,George Azzopardi
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:150: 113318-113318 被引量:164
标识
DOI:10.1016/j.eswa.2020.113318
摘要

The recent technological advent of cryptocurrencies and their respective benefits have been shrouded with a number of illegal activities operating over the network such as money laundering, bribery, phishing, fraud, among others. In this work we focus on the Ethereum network, which has seen over 400 million transactions since its inception. Using 2179 accounts flagged by the Ethereum community for their illegal activity coupled with 2502 normal accounts, we seek to detect illicit accounts based on their transaction history using the XGBoost classifier. Using 10 fold cross-validation, XGBoost achieved an average accuracy of 0.963 ( ± 0.006) with an average AUC of 0.994 ( ± 0.0007). The top three features with the largest impact on the final model output were established to be ‘Time diff between first and last (Mins)’, ‘Total Ether balance’ and ‘Min value received’. Based on the results we conclude that the proposed approach is highly effective in detecting illicit accounts over the Ethereum network. Our contribution is multi-faceted; firstly, we propose an effective method to detect illicit accounts over the Ethereum network; secondly, we provide insights about the most important features; and thirdly, we publish the compiled data set as a benchmark for future related works.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪花君完成签到,获得积分10
刚刚
派大星发布了新的文献求助10
刚刚
科研通AI5应助hzauchen采纳,获得10
刚刚
八九完成签到,获得积分10
1秒前
快乐小白菜应助圈圈采纳,获得10
1秒前
2秒前
冷艳后妈发布了新的文献求助10
2秒前
蒋念寒发布了新的文献求助10
2秒前
36456657应助CC采纳,获得10
2秒前
猪猪猪发布了新的文献求助10
2秒前
2秒前
scxl2000完成签到,获得积分10
3秒前
3秒前
oyc完成签到,获得积分10
3秒前
3秒前
3秒前
Leexxxhaoo发布了新的文献求助10
4秒前
FFFFFFF完成签到,获得积分10
4秒前
4秒前
LIU发布了新的文献求助10
4秒前
小二郎应助医路有你采纳,获得10
4秒前
研友_VZG7GZ应助卡顿公开采纳,获得10
4秒前
可爱的函函应助一直采纳,获得20
4秒前
ufuon完成签到,获得积分10
5秒前
VDC应助MrFamous采纳,获得50
6秒前
娜行发布了新的文献求助10
6秒前
啦啦鱼完成签到 ,获得积分10
6秒前
6秒前
7秒前
习习发布了新的文献求助10
7秒前
7秒前
wanci应助drizzling采纳,获得10
7秒前
r93527005完成签到,获得积分10
7秒前
8秒前
霸气谷蕊完成签到 ,获得积分10
10秒前
羊羊羊完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI5应助WNL采纳,获得10
11秒前
Xuu完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678