Artificial intelligence and social responsibility: the case of the artificial intelligence strategies in the United States, Russia, and China

蓝图 社会责任 政府(语言学) 独创性 中国 领域(数学) 价值(数学) 控制论 企业社会责任 政治学 社会学 管理科学 工程伦理学 人工智能 公共关系 计算机科学 工程类 法学 创造力 数学 哲学 纯数学 机器学习 机械工程 语言学
作者
Anton M. Saveliev,Denis Zhurenkov
出处
期刊:Kybernetes [Emerald (MCB UP)]
卷期号:50 (3): 656-675 被引量:37
标识
DOI:10.1108/k-01-2020-0060
摘要

Purpose The purpose of this paper is to review and analyze how the development and utilization of artificial intelligence (AI) technologies for social responsibility are defined in the national AI strategies of the USA, Russia and China. Design/methodology/approach The notion of responsibility concerning AI is currently not legally defined by any country in the world. The authors of this research are going to use the methodology, based on Luciano Floridi’s Unified framework of five principles for AI in society, to determine how social responsibility is implemented in the AI strategies of the USA, Russia and China. Findings All three strategies for the development of AI in the USA, Russia and China, as evaluated in the paper, contain some or other components aimed at achieving public responsibility and responsible use of AI. The Unified framework of five principles for AI in society, developed by L. Floridi, can be used as a viable assessment tool to determine at least in general terms how social responsibility is implied and implemented in national strategic documents in the field of AI. However, authors of the paper call for further development in the field of mutually recognizable ethical models for socially beneficial AI. Practical implications This study allows us to better understand the linkages, overlaps and differences between modern philosophy of information, AI-ethics, social responsibility and government regulation. The analysis provided in this paper can serve as a basic blueprint for future attempts to define how social responsibility is understood and implied by government decision-makers. Originality/value The analysis provided in the paper, however general and empirical it may be, is a first-time example of how the Unified framework of five principles for AI in society can be applied as an assessment tool to determine social responsibility in AI-related official documents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yiseeya发布了新的文献求助10
1秒前
1秒前
1秒前
小远完成签到 ,获得积分10
1秒前
2秒前
所所应助mbf采纳,获得10
3秒前
lin完成签到,获得积分10
4秒前
My_Eden发布了新的文献求助10
5秒前
林伟发布了新的文献求助10
5秒前
jy发布了新的文献求助10
6秒前
Sience发布了新的文献求助10
6秒前
7秒前
10秒前
star完成签到,获得积分10
10秒前
10秒前
随梦而飞发布了新的文献求助30
10秒前
风中夜天完成签到 ,获得积分10
11秒前
11秒前
一往之前发布了新的文献求助10
12秒前
司徒开山发布了新的文献求助10
13秒前
14秒前
乐观寻绿应助虚拟的铃铛采纳,获得10
14秒前
哈哈哈应助林伟采纳,获得10
15秒前
15秒前
英勇代荷完成签到,获得积分20
15秒前
lalala发布了新的文献求助10
16秒前
LPL发布了新的文献求助10
17秒前
18秒前
19秒前
BCyu发布了新的文献求助10
19秒前
汉堡包应助hui采纳,获得30
19秒前
MNL驳回了桐桐应助
21秒前
英姑应助ZJJ采纳,获得10
21秒前
Jiayana完成签到,获得积分10
22秒前
dl发布了新的文献求助30
22秒前
hei发布了新的文献求助10
22秒前
赘婿应助爱学习采纳,获得10
25秒前
雪山飞龙完成签到,获得积分10
27秒前
潘pan完成签到 ,获得积分10
28秒前
28秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Synchrotron X-Ray Methods in Clay Science 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340351
求助须知:如何正确求助?哪些是违规求助? 2968384
关于积分的说明 8633457
捐赠科研通 2647933
什么是DOI,文献DOI怎么找? 1449886
科研通“疑难数据库(出版商)”最低求助积分说明 671575
邀请新用户注册赠送积分活动 660594