🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情
已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning to predict microbial community functions: An analysis of dissolved organic carbon from litter decomposition

随机森林 微生物群 特征选择 机器学习 微观世界 人工智能 基因组 人工神经网络 计算机科学 生态学 生物 生物信息学 生物化学 基因
作者
Jaron Thompson,Renee Johansen,John Dunbar,Brian Munsky
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:14 (7): e0215502-e0215502 被引量:93
标识
DOI:10.1371/journal.pone.0215502
摘要

Microbial communities are ubiquitous and often influence macroscopic properties of the ecosystems they inhabit. However, deciphering the functional relationship between specific microbes and ecosystem properties is an ongoing challenge owing to the complexity of the communities. This challenge can be addressed, in part, by integrating the advances in DNA sequencing technology with computational approaches like machine learning. Although machine learning techniques have been applied to microbiome data, use of these techniques remains rare, and user-friendly platforms to implement such techniques are not widely available. We developed a tool that implements neural network and random forest models to perform regression and feature selection tasks on microbiome data. In this study, we applied the tool to analyze soil microbiome (16S rRNA gene profiles) and dissolved organic carbon (DOC) data from a 44-day plant litter decomposition experiment. The microbiome data includes 1709 total bacterial operational taxonomic units (OTU) from 300+ microcosms. Regression analysis of predicted and actual DOC for a held-out test set of 51 samples yield Pearson's correlation coefficients of.636 and.676 for neural network and random forest approaches, respectively. Important taxa identified by the machine learning techniques are compared to results from a standard tool (indicator species analysis) widely used by microbial ecologists. Of 1709 bacterial taxa, indicator species analysis identified 285 taxa as significant determinants of DOC concentration. Of the top 285 ranked features determined by machine learning methods, a subset of 86 taxa are common to all feature selection techniques. Using this subset of features, prediction results for random permutations of the data set are at least equally accurate compared to predictions determined using the entire feature set. Our results suggest that integration of multiple methods can aid identification of a robust subset of taxa within complex communities that may drive specific functional outcomes of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助詹卫卫采纳,获得10
刚刚
科研通AI5应助科研达人采纳,获得30
1秒前
1秒前
xiaoyangke发布了新的文献求助10
2秒前
烟花应助落日出逃采纳,获得10
3秒前
JXDeng发布了新的文献求助40
5秒前
小鹿斑比发布了新的文献求助10
5秒前
lucky应助Wa11采纳,获得10
5秒前
星辰大海应助能干的海露采纳,获得10
7秒前
甜甜南松完成签到,获得积分10
10秒前
11秒前
12秒前
hucchongzi应助香蕉海白采纳,获得10
13秒前
隐形曼青应助qqqqqqqq采纳,获得10
16秒前
CodeCraft应助qqqqqqqq采纳,获得10
16秒前
MICKEYQ完成签到,获得积分10
16秒前
迟大猫应助qqqqqqqq采纳,获得10
16秒前
彭于晏应助qqqqqqqq采纳,获得10
16秒前
科研通AI2S应助qqqqqqqq采纳,获得10
16秒前
yishan101应助qqqqqqqq采纳,获得10
16秒前
落日出逃发布了新的文献求助10
16秒前
上官若男应助qqqqqqqq采纳,获得10
16秒前
九曲应助qqqqqqqq采纳,获得10
16秒前
迟大猫应助qqqqqqqq采纳,获得10
16秒前
zl应助qqqqqqqq采纳,获得10
16秒前
研友_Lw7QmL完成签到,获得积分20
18秒前
KukudMing发布了新的文献求助10
18秒前
君寻完成签到 ,获得积分10
18秒前
21秒前
24秒前
科研通AI5应助科研达人采纳,获得10
27秒前
迟大猫应助小鹿斑比采纳,获得10
28秒前
cxy发布了新的文献求助10
29秒前
林夕化十发布了新的文献求助10
30秒前
30秒前
ruyuan完成签到,获得积分10
30秒前
希望天下0贩的0应助andrele采纳,获得10
31秒前
31秒前
知无涯者完成签到,获得积分10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
Barth, Derrida and the Language of Theology 500
2024-2030年中国聚异戊二烯橡胶行业市场现状调查及发展前景研判报告 500
Facharztprüfung Kardiologie 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3600210
求助须知:如何正确求助?哪些是违规求助? 3168981
关于积分的说明 9559911
捐赠科研通 2875376
什么是DOI,文献DOI怎么找? 1578759
邀请新用户注册赠送积分活动 742290
科研通“疑难数据库(出版商)”最低求助积分说明 725121