作者
Edward J. Kilbourne,Russell L. Widom,Douglas C. Harnish,Sohail Malik,Sotirios K. Karathanasis
摘要
Liver-specific expression of the apolipoprotein AI (apoAI) gene is mediated by transcription factors bound to three sites (A, B, and C) in the apoAI enhancer. Sites A and C bind various members of the nuclear receptor superfamily, including the orphan nuclear receptor apolipoprotein regulatory protein-1 (ARP-1); site B binds the liver-enriched factor hepatic nuclear factor-3. The immediate early growth response factor (Egr-1), which is transiently expressed in various pathophysiologic states of the liver, activates the apoAI enhancer and overcomes ARP-1-mediated repression of the enhancer in hepatoblastoma HepG2 cells. Deletion mapping analysis revealed two Egr-1 binding sites, E1 and E2, flanking site A. Egr-1 bound efficiently to both E1 and E2. Sp1 in HepG2 nuclear extracts bound to E2 but not E1. In HepG2 cells, E1 functioned as an Egr-1 response element, whereas E2 had high basal activity and was not further induced by Egr-1. Mutations that prevent Egr-1 binding to the apoAI enhancer abolished its responsiveness to Egr-1, while they had only minor effects on its constitutive activity. These mutations also diminished the ability of Egr-1 to overcome ARP-1-mediated repression. Elimination of transcription factor binding to sites A, B, or C reduced enhancer activity without affecting Egr-1-dependent activation. We argue that Egr-1 is recruited to the apoAI enhancer complex under unusual circumstances, such as those prevailing during liver regeneration, to maintain apoAI transcription levels by overriding prior transcriptional controls. Liver-specific expression of the apolipoprotein AI (apoAI) gene is mediated by transcription factors bound to three sites (A, B, and C) in the apoAI enhancer. Sites A and C bind various members of the nuclear receptor superfamily, including the orphan nuclear receptor apolipoprotein regulatory protein-1 (ARP-1); site B binds the liver-enriched factor hepatic nuclear factor-3. The immediate early growth response factor (Egr-1), which is transiently expressed in various pathophysiologic states of the liver, activates the apoAI enhancer and overcomes ARP-1-mediated repression of the enhancer in hepatoblastoma HepG2 cells. Deletion mapping analysis revealed two Egr-1 binding sites, E1 and E2, flanking site A. Egr-1 bound efficiently to both E1 and E2. Sp1 in HepG2 nuclear extracts bound to E2 but not E1. In HepG2 cells, E1 functioned as an Egr-1 response element, whereas E2 had high basal activity and was not further induced by Egr-1. Mutations that prevent Egr-1 binding to the apoAI enhancer abolished its responsiveness to Egr-1, while they had only minor effects on its constitutive activity. These mutations also diminished the ability of Egr-1 to overcome ARP-1-mediated repression. Elimination of transcription factor binding to sites A, B, or C reduced enhancer activity without affecting Egr-1-dependent activation. We argue that Egr-1 is recruited to the apoAI enhancer complex under unusual circumstances, such as those prevailing during liver regeneration, to maintain apoAI transcription levels by overriding prior transcriptional controls.