Off-Policy Reinforcement Learning for Synchronization in Multiagent Graphical Games

强化学习 计算机科学 贝尔曼方程 同步(交流) 控制(管理) 数学优化 最优控制 功能(生物学) 增强学习 多智能体系统 价值(数学) 纳什均衡 人工智能 数学 机器学习 进化生物学 生物 计算机网络 频道(广播)
作者
Jinna Li,Hamidreza Modares,Tianyou Chai,Frank L. Lewis,Lihua Xie
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:28 (10): 2434-2445 被引量:147
标识
DOI:10.1109/tnnls.2016.2609500
摘要

This paper develops an off-policy reinforcement learning (RL) algorithm to solve optimal synchronization of multiagent systems. This is accomplished by using the framework of graphical games. In contrast to traditional control protocols, which require complete knowledge of agent dynamics, the proposed off-policy RL algorithm is a model-free approach, in that it solves the optimal synchronization problem without knowing any knowledge of the agent dynamics. A prescribed control policy, called behavior policy, is applied to each agent to generate and collect data for learning. An off-policy Bellman equation is derived for each agent to learn the value function for the policy under evaluation, called target policy, and find an improved policy, simultaneously. Actor and critic neural networks along with least-square approach are employed to approximate target control policies and value functions using the data generated by applying prescribed behavior policies. Finally, an off-policy RL algorithm is presented that is implemented in real time and gives the approximate optimal control policy for each agent using only measured data. It is shown that the optimal distributed policies found by the proposed algorithm satisfy the global Nash equilibrium and synchronize all agents to the leader. Simulation results illustrate the effectiveness of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研牛马发布了新的文献求助10
2秒前
3秒前
4秒前
dalian完成签到,获得积分10
4秒前
4秒前
温柔以冬发布了新的文献求助10
4秒前
szzz完成签到,获得积分10
6秒前
英俊的铭应助王星星采纳,获得10
6秒前
zzznznnn发布了新的文献求助10
7秒前
旋转鸡爪子应助大青山采纳,获得10
7秒前
8秒前
科研达人发布了新的文献求助10
8秒前
思维隋发布了新的文献求助10
9秒前
szzz发布了新的文献求助10
9秒前
wy完成签到,获得积分10
9秒前
9秒前
10秒前
11秒前
11秒前
12秒前
虚幻初之完成签到,获得积分10
12秒前
Dr大壮完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
兰乖乖发布了新的文献求助50
14秒前
14秒前
寻悦发布了新的文献求助10
15秒前
加美希尔完成签到,获得积分10
15秒前
15秒前
15秒前
16秒前
18秒前
18秒前
zzznznnn完成签到,获得积分10
18秒前
19秒前
19秒前
19秒前
19秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998688
求助须知:如何正确求助?哪些是违规求助? 3538149
关于积分的说明 11273517
捐赠科研通 3277099
什么是DOI,文献DOI怎么找? 1807405
邀请新用户注册赠送积分活动 883855
科研通“疑难数据库(出版商)”最低求助积分说明 810070