Dilated Adversarial U-Net Network for automatic gross tumor volume segmentation of nasopharyngeal carcinoma

分割 计算机科学 人工智能 鼻咽癌 特征(语言学) 直方图 深度学习 图像分割 模式识别(心理学) 体积热力学 放射治疗 图像(数学) 放射科 医学 语言学 哲学 物理 量子力学
作者
Yanhua Liu,Xiaoguang Yuan,Xin Jiang,Pei Wang,Jinqiao Kou,Haofeng Wang,Mingzhe Liu
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:111: 107722-107722 被引量:18
标识
DOI:10.1016/j.asoc.2021.107722
摘要

Nasopharyngeal carcinoma (NPC) is a malignant tumor in the nasopharyngeal epithelium and is mainly treated by radiotherapy. The accurate delineation of the target tumor can greatly improve the radiotherapy effectiveness. However, due to the small size of the NPC imaging volume, the scarcity of labeled samples, the low signal-to-noise ratio in small target areas and the lack of detailed features, automatic gross tumor volume (GTV) delineation inspired by advances in domain adaption for high-resolution image processing has become a great challenge. In addition, since computed tomography (CT) images have the low resolution of soft tissues, it is difficult to identify small volume tumors, and segmentation accuracy of this kind of small GTV is very low. In this paper, we propose an automatic segmentation model based on adversarial network and U-Net for NPC delineation. Specifically, we embed adversarial classification learning into a segmentation network to balance the distribution differences between the small targets in the sample and the large target categories. To reduce the loss weight of large target categories with large samples, and simultaneously increase the weight of small target categories, we design a new U-Net based on focal loss as a GTV segmentation model for adjusting the effect of different categories on the final loss. This method can effectively solve the feature bias caused by the imbalance of the target volume distribution. Furthermore, we conduct a pre-processing of images using an algorithm based on distribution histograms to ensure that the same or approximate CT value represents the same organization. In order to evaluate our proposed method, we perform experiments on the open datasets from StructSeg2019 and the datasets provided by Sichuan Provincial Cancer Hospital. The results of the comparison with some typical up-to-date methods demonstrate that our model can significantly enhance detection accuracy and sensitivity for NPC segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mihhhhh完成签到,获得积分10
刚刚
Drwenlu发布了新的文献求助10
1秒前
前进的光发布了新的文献求助10
1秒前
隐形曼青应助ayan采纳,获得10
1秒前
Owen应助蓝绝采纳,获得10
1秒前
姜且完成签到 ,获得积分10
2秒前
YiWei完成签到 ,获得积分10
2秒前
研友_VZG7GZ应助豆包采纳,获得10
3秒前
闵问柳发布了新的文献求助10
3秒前
cruiser完成签到,获得积分10
3秒前
4秒前
qcy1025完成签到,获得积分20
4秒前
Lucas应助优雅的纸鹤采纳,获得10
4秒前
科研通AI2S应助RT采纳,获得10
4秒前
4秒前
5秒前
科研通AI2S应助周Z采纳,获得10
5秒前
阳光洒进暖巷完成签到,获得积分10
5秒前
5秒前
Gan发布了新的文献求助10
5秒前
SciGPT应助喽喽采纳,获得10
5秒前
6秒前
xiaowannamoney完成签到,获得积分10
6秒前
小马甲应助聪慧雪糕采纳,获得10
6秒前
酷波er应助聪慧雪糕采纳,获得10
6秒前
allenice完成签到,获得积分10
7秒前
ZYX完成签到,获得积分20
7秒前
韬奋!完成签到,获得积分10
7秒前
多罗罗发布了新的文献求助10
7秒前
8秒前
勤奋幻柏发布了新的文献求助30
8秒前
begonia2021发布了新的文献求助10
9秒前
9秒前
mengbo完成签到,获得积分10
9秒前
Nann完成签到 ,获得积分10
9秒前
10秒前
LILING完成签到,获得积分10
11秒前
彭小璐发布了新的文献求助10
11秒前
liuxshan完成签到,获得积分10
11秒前
fs完成签到 ,获得积分10
11秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3172033
求助须知:如何正确求助?哪些是违规求助? 2822748
关于积分的说明 7942297
捐赠科研通 2483834
什么是DOI,文献DOI怎么找? 1323186
科研通“疑难数据库(出版商)”最低求助积分说明 633893
版权声明 602647