A Multifactorial Evolutionary Algorithm for Multitasking Under Interval Uncertainties

进化算法 人口 数学优化 区间算术 区间(图论) 进化计算 计算机科学 算法 最优化问题 数学 有界函数 组合数学 数学分析 社会学 人口学
作者
Yi Jiang,Junren Bai,Haibo He,Wei Zhou,Lizhong Yao
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 908-922 被引量:42
标识
DOI:10.1109/tevc.2020.2975381
摘要

Various real-world applications with interval uncertainty, such as the path planning of mobile robot, layout of radio frequency identification readers and solar desalination, can be formulated as an interval multiobjective optimization problem (IMOOP), which is usually transformed into one or a series of certain problems to solve by using evolutionary algorithms. However, a definite characteristic among them is that only a single optimization task can be catched up at a time. Inspired by the multifactorial evolutionary algorithm (MFEA), a novel interval MFEA (IMFEA) is proposed to solve IMOOPs simultaneously using a single population of evolving individuals. In the proposed method, the potential interdependency across related problems can be explored in the unified genotype space, and multitasks of multiobjective interval optimization problems are solved at once by promoting knowledge transfer for the greater synergistic search to improve the convergence speed and the quality of the optimal solution set. Specifically, an interval crowding distance based on shape evaluation is calculated to evaluate the interval solutions more comprehensively. In addition, an interval dominance relationship based on the evolutionary state of the population is designed to obtain the interval confidence level, which considers the difference of average convergence levels and the relative size of the potential possibility between individuals. Correspondingly, the strict transitivity proof of the presented dominance relationship is given. The efficacy of the associated evolutionary algorithm is validated on a series of benchmark test functions, as well as a real-world case of robot path planning with many terrains that provides insight into the performance of the method in the face of IMOOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
嘟嘟完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助sxl采纳,获得10
2秒前
2秒前
Triumph完成签到,获得积分10
2秒前
Hale完成签到,获得积分0
2秒前
CodeCraft应助xiaomin采纳,获得10
4秒前
96完成签到,获得积分10
4秒前
5秒前
newstrong发布了新的文献求助10
5秒前
llp关注了科研通微信公众号
6秒前
6秒前
Lumos发布了新的文献求助10
10秒前
Daemon完成签到,获得积分10
12秒前
陈龙发布了新的文献求助10
12秒前
17秒前
17秒前
田様应助杰a采纳,获得10
17秒前
17秒前
英姑应助蓝胖子采纳,获得10
18秒前
SciGPT应助杨金城采纳,获得10
18秒前
CodeCraft应助一丁雨采纳,获得10
19秒前
清脆盼柳完成签到,获得积分10
20秒前
llp发布了新的文献求助10
21秒前
从容芮应助曾经的彩虹采纳,获得30
21秒前
21秒前
ZZP27发布了新的文献求助10
21秒前
团子发布了新的文献求助10
21秒前
赘婿应助wsqg123采纳,获得10
22秒前
小二郎应助wmj7421采纳,获得10
23秒前
所所应助xj采纳,获得10
23秒前
CodeCraft应助阿橘采纳,获得10
24秒前
25秒前
活力的茉莉完成签到 ,获得积分10
25秒前
25秒前
zjhzslq发布了新的文献求助10
25秒前
迟迟发布了新的文献求助80
29秒前
橘子猫发布了新的文献求助10
30秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229292
求助须知:如何正确求助?哪些是违规求助? 2877020
关于积分的说明 8197467
捐赠科研通 2544342
什么是DOI,文献DOI怎么找? 1374310
科研通“疑难数据库(出版商)”最低求助积分说明 646923
邀请新用户注册赠送积分活动 621738