GraphDTA: predicting drug–target binding affinity with graph neural networks

计算机科学 药物重新定位 机器学习 人工智能 Python(编程语言) 药物开发 药物发现 人工神经网络 源代码 化学信息学 药物靶点 脚本语言 药品 图形 深度学习 生物信息学 理论计算机科学 药理学 程序设计语言 生物 医学
作者
Thin Nguyen,Hang Le,Thomas P. Quinn,Tri Minh Nguyen,Thuc Duy Le,Svetha Venkatesh
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:37 (8): 1140-1147 被引量:562
标识
DOI:10.1093/bioinformatics/btaa921
摘要

Abstract Summary The development of new drugs is costly, time consuming and often accompanied with safety issues. Drug repurposing can avoid the expensive and lengthy process of drug development by finding new uses for already approved drugs. In order to repurpose drugs effectively, it is useful to know which proteins are targeted by which drugs. Computational models that estimate the interaction strength of new drug–target pairs have the potential to expedite drug repurposing. Several models have been proposed for this task. However, these models represent the drugs as strings, which is not a natural way to represent molecules. We propose a new model called GraphDTA that represents drugs as graphs and uses graph neural networks to predict drug–target affinity. We show that graph neural networks not only predict drug–target affinity better than non-deep learning models, but also outperform competing deep learning methods. Our results confirm that deep learning models are appropriate for drug–target binding affinity prediction, and that representing drugs as graphs can lead to further improvements. Availability of implementation The proposed models are implemented in Python. Related data, pre-trained models and source code are publicly available at https://github.com/thinng/GraphDTA. All scripts and data needed to reproduce the post hoc statistical analysis are available from https://doi.org/10.5281/zenodo.3603523. Supplementary information Supplementary data are available at Bioinformatics online.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
天天快乐应助一一采纳,获得10
3秒前
炙热的雪糕完成签到,获得积分10
3秒前
4秒前
心心0521发布了新的文献求助10
6秒前
pluto应助刘济源采纳,获得10
6秒前
FIN应助15采纳,获得10
6秒前
内向士萧发布了新的文献求助10
7秒前
abcdulla777完成签到,获得积分20
7秒前
8秒前
SYLH应助元狩采纳,获得10
9秒前
DUANYALI完成签到,获得积分10
9秒前
12秒前
马玲完成签到,获得积分10
12秒前
12秒前
13秒前
iwwwwwn完成签到,获得积分20
13秒前
123发布了新的文献求助10
13秒前
15完成签到,获得积分10
15秒前
啊露发布了新的文献求助10
16秒前
可乐发布了新的文献求助10
17秒前
17秒前
科研通AI5应助iwwwwwn采纳,获得10
19秒前
20秒前
20秒前
酷波er应助htWu采纳,获得10
22秒前
虚拟的惜筠发布了新的文献求助150
24秒前
烟花应助LONG采纳,获得10
24秒前
粗心的易云完成签到 ,获得积分10
24秒前
24秒前
传奇3应助123采纳,获得30
25秒前
Yuying发布了新的文献求助10
26秒前
也曦完成签到 ,获得积分20
28秒前
28秒前
Saman发布了新的文献求助10
29秒前
31秒前
大个应助wuxunxun2015采纳,获得10
32秒前
33秒前
xdy完成签到 ,获得积分10
34秒前
张楠完成签到,获得积分10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
THE STRUCTURES OF 'SHR' AND 'YOU' IN MANDARIN CHINESE 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3761949
求助须知:如何正确求助?哪些是违规求助? 3305642
关于积分的说明 10135083
捐赠科研通 3019747
什么是DOI,文献DOI怎么找? 1658374
邀请新用户注册赠送积分活动 792030
科研通“疑难数据库(出版商)”最低求助积分说明 754783