生物化学
过氧化物还原蛋白
磷脂过氧化氢谷胱甘肽过氧化物酶
化学
磷脂酶A2
磷酸果糖激酶2
过氧化物酶
胞浆
磷脂
磷脂酶
谷胱甘肽过氧化物酶
硫氧还蛋白
酶
谷胱甘肽
膜
标识
DOI:10.1089/ars.2010.3412
摘要
Peroxiredoxin 6 (Prdx6) is the prototype and the only mammalian 1-Cys member of the Prdx family. Major differences from 2-Cys Prdxs include the use of glutathione (GSH) instead of thioredoxin as the physiological reductant, heterodimerization with πGSH S-transferase as part of the catalytic cycle, and the ability either to reduce the oxidized sn-2 fatty acyl group of phospholipids (peroxidase activity) or to hydrolyze the sn-2 ester (alkyl) bond of phospholipids (phospholipase A2 [PLA2] activity). The bifunctional protein has separate active sites for peroxidase (C47, R132, H39) and PLA2 (S32, D140, H26) activities. These activities are dependent on binding of the protein to phospholipids at acidic pH and to oxidized phospholipids at cytosolic pH. Prdx6 can be phosphorylated by MAP kinases at T177, which markedly increases its PLA2 activity and broadens its pH-activity spectrum. Prdx6 is primarily cytosolic but also is targeted to acidic organelles (lysosomes, lamellar bodies) by a specific targeting sequence (amino acids 31–40). Oxidant stress and keratinocyte growth factor are potent regulators of Prdx6 gene expression. Prdx6 has important roles in both antioxidant defense based on its ability to reduce peroxidized membrane phospholipids and in phospholipid homeostasis based on its ability to generate lysophospholipid substrate for the remodeling pathway of phospholipid synthesis. Antioxid. Redox Signal. 15, 831–844.
科研通智能强力驱动
Strongly Powered by AbleSci AI