Flexible, Biodegradable, and Wireless Magnetoelectric Paper for Simple In Situ Personalization of Bioelectric Implants

灵活性(工程) 材料科学 个性化 纳米技术 无线 计算机科学 电信 统计 数学 万维网
作者
Jun Kyu Choe,Suntae Kim,Ah‐Young Lee,Cholong Choi,Jae‐Hyeon Cho,Wook Jo,Myoung Hoon Song,Chaenyung Cha,Jiyun Kim
出处
期刊:Advanced Materials [Wiley]
卷期号:36 (18) 被引量:6
标识
DOI:10.1002/adma.202311154
摘要

Abstract Bioelectronic implants delivering electrical stimulation offer an attractive alternative to traditional pharmaceuticals in electrotherapy. However, achieving simple, rapid, and cost‐effective personalization of these implants for customized treatment in unique clinical and physical scenarios presents a substantial challenge. This challenge is further compounded by the need to ensure safety and minimal invasiveness, requiring essential attributes such as flexibility, biocompatibility, lightness, biodegradability, and wireless stimulation capability. Here, a flexible, biodegradable bioelectronic paper with homogeneously distributed wireless stimulation functionality for simple personalization of bioelectronic implants is introduced. The bioelectronic paper synergistically combines i) lead‐free magnetoelectric nanoparticles (MENs) that facilitate electrical stimulation in response to external magnetic field and ii) flexible and biodegradable nanofibers (NFs) that enable localization of MENs for high‐selectivity stimulation, oxygen/nutrient permeation, cell orientation modulation, and biodegradation rate control. The effectiveness of wireless electrical stimulation in vitro through enhanced neuronal differentiation of neuron‐like PC12 cells and the controllability of their microstructural orientation are shown. Also, scalability, design flexibility, and rapid customizability of the bioelectronic paper are shown by creating various 3D macrostructures using simple paper crafting techniques such as cutting and folding. This platform holds promise for simple and rapid personalization of temporary bioelectronic implants for minimally invasive wireless stimulation therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
韦觅松发布了新的文献求助10
2秒前
2秒前
oliv完成签到 ,获得积分10
2秒前
wanci应助赵赵1203采纳,获得10
3秒前
kimi发布了新的文献求助10
3秒前
心灵美大侠完成签到,获得积分10
3秒前
JamesPei应助haku采纳,获得10
3秒前
襄阳完成签到,获得积分10
3秒前
4秒前
卓矢完成签到 ,获得积分10
6秒前
Tr发布了新的文献求助10
7秒前
7秒前
Xieyusen发布了新的文献求助10
8秒前
Makkki发布了新的文献求助10
9秒前
石头关注了科研通微信公众号
10秒前
bkagyin应助Q123ba叭采纳,获得10
10秒前
爱笑的冷风完成签到 ,获得积分10
11秒前
小马甲应助廾匸采纳,获得10
12秒前
13秒前
香蕉觅云应助韦觅松采纳,获得10
13秒前
JamesPei应助Tr采纳,获得10
13秒前
miurny发布了新的文献求助10
14秒前
冷傲的薯片应助yujiashun采纳,获得10
15秒前
15秒前
风来枫去发布了新的文献求助10
16秒前
19秒前
苹果孤风发布了新的文献求助10
19秒前
21秒前
22秒前
CodeCraft应助许思真采纳,获得10
22秒前
赧赧发布了新的文献求助10
23秒前
24秒前
玩伴zz给玩伴zz的求助进行了留言
25秒前
27秒前
赵赵1203发布了新的文献求助10
28秒前
上官老黑完成签到 ,获得积分10
28秒前
28秒前
29秒前
30秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248499
求助须知:如何正确求助?哪些是违规求助? 2891839
关于积分的说明 8268971
捐赠科研通 2559871
什么是DOI,文献DOI怎么找? 1388724
科研通“疑难数据库(出版商)”最低求助积分说明 650815
邀请新用户注册赠送积分活动 627782