Identifying Users Across Social Media Networks for Interpretable Fine-Grained Neighborhood Matching by Adaptive GAT

计算机科学 匹配(统计) 万维网 情报检索 数学 统计
作者
Wei Tang,Haifeng Sun,Jingyu Wang,Cong Liu,Qi Qi,Jing Wang,Jianxin Liao
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (5): 3453-3466 被引量:5
标识
DOI:10.1109/tsc.2023.3288872
摘要

The primary concern of numerous online social media network (SMN) platforms is how to provide users with effective and personalized web services. To achieve this goal, SMN platforms typically begin by collecting user preferences based on user behaviors (e.g., browsing history, posts) or user profiles. However, the effective information about a specific user on a single SMN platform is limited and monotonous, preventing a comprehensive reflection of the user's preferences. Therefore, recognizing anonymous but identical users across two SMNs to integrate their information is crucial for enhancing web services. Clearly, cross-platform research has the potential to aid in the resolution of numerous problems in service computing theory and applications. Therefore, in this article, we present the C ross- P latform U ser M atcher ( CPUM ) framework, which attempts to map users into a union vector space and then performs user matching based on distance metrics. In particular, we introduce a GNN-based encoder Ada ptive G raph A ttention Ne t work ( AdaGAT ) for modeling user attributes and topology jointly in the social networks to capture two typical alignment principles: topology consistency and attribute consistency. Moreover, we derive AdaGAT from the heuristic of the spectral network alignment technique FINAL, which theoretically guarantees AdaGAT's efficacy. To the best of our knowledge, AdaGAT is the first representation-based alignment model to integrate these two alignment principles synergistically. In addition, two position encoding schemes are introduced to prevent alignment confusion that commonly arises with GNN-based alignment models. Extensive experiments on real-world datasets validate the superiority of the proposed framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyanyan完成签到,获得积分10
2秒前
长安完成签到,获得积分10
3秒前
Kristine完成签到 ,获得积分10
4秒前
尚影芷完成签到,获得积分10
12秒前
免疫小白完成签到 ,获得积分10
13秒前
2385697574完成签到,获得积分10
15秒前
Tangviva1988完成签到,获得积分10
20秒前
艺术家完成签到 ,获得积分10
27秒前
Brave发布了新的文献求助10
27秒前
yT089完成签到,获得积分10
29秒前
自然选择完成签到,获得积分10
29秒前
Jackcaosky完成签到 ,获得积分10
30秒前
chenying完成签到 ,获得积分0
32秒前
左右完成签到 ,获得积分10
33秒前
huahua完成签到 ,获得积分10
36秒前
JJ完成签到,获得积分10
37秒前
大耳萌图完成签到 ,获得积分10
37秒前
山是山三十三完成签到 ,获得积分10
38秒前
now完成签到,获得积分10
41秒前
大蝴蝶x完成签到,获得积分10
43秒前
48秒前
Onlyxxl完成签到,获得积分10
49秒前
卫卫完成签到 ,获得积分10
53秒前
53秒前
菲菲完成签到 ,获得积分10
56秒前
余如龙完成签到,获得积分10
57秒前
13633501455完成签到 ,获得积分10
57秒前
Lim1819完成签到 ,获得积分10
58秒前
CACT完成签到,获得积分10
1分钟前
语恒完成签到,获得积分10
1分钟前
从容向真完成签到,获得积分10
1分钟前
眼睛大夜白完成签到 ,获得积分10
1分钟前
YanJinyu完成签到,获得积分10
1分钟前
霸气南珍发布了新的文献求助30
1分钟前
标致小土豆完成签到 ,获得积分10
1分钟前
111完成签到,获得积分10
1分钟前
zhangyuting完成签到 ,获得积分10
1分钟前
司徒无剑完成签到,获得积分10
1分钟前
ran完成签到 ,获得积分10
1分钟前
ding应助wei采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565186
求助须知:如何正确求助?哪些是违规求助? 4650012
关于积分的说明 14689551
捐赠科研通 4591914
什么是DOI,文献DOI怎么找? 2519388
邀请新用户注册赠送积分活动 1491921
关于科研通互助平台的介绍 1463136