Identifying Users Across Social Media Networks for Interpretable Fine-Grained Neighborhood Matching by Adaptive GAT

计算机科学 匹配(统计) 万维网 情报检索 数学 统计
作者
Wei Tang,Haifeng Sun,Jingyu Wang,Cong Liu,Qi Qi,Jing Wang,Jianxin Liao
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (5): 3453-3466 被引量:5
标识
DOI:10.1109/tsc.2023.3288872
摘要

The primary concern of numerous online social media network (SMN) platforms is how to provide users with effective and personalized web services. To achieve this goal, SMN platforms typically begin by collecting user preferences based on user behaviors (e.g., browsing history, posts) or user profiles. However, the effective information about a specific user on a single SMN platform is limited and monotonous, preventing a comprehensive reflection of the user's preferences. Therefore, recognizing anonymous but identical users across two SMNs to integrate their information is crucial for enhancing web services. Clearly, cross-platform research has the potential to aid in the resolution of numerous problems in service computing theory and applications. Therefore, in this article, we present the C ross- P latform U ser M atcher ( CPUM ) framework, which attempts to map users into a union vector space and then performs user matching based on distance metrics. In particular, we introduce a GNN-based encoder Ada ptive G raph A ttention Ne t work ( AdaGAT ) for modeling user attributes and topology jointly in the social networks to capture two typical alignment principles: topology consistency and attribute consistency. Moreover, we derive AdaGAT from the heuristic of the spectral network alignment technique FINAL, which theoretically guarantees AdaGAT's efficacy. To the best of our knowledge, AdaGAT is the first representation-based alignment model to integrate these two alignment principles synergistically. In addition, two position encoding schemes are introduced to prevent alignment confusion that commonly arises with GNN-based alignment models. Extensive experiments on real-world datasets validate the superiority of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
RQY完成签到,获得积分10
1秒前
DKX完成签到 ,获得积分10
1秒前
2秒前
Lucky完成签到 ,获得积分10
2秒前
iwsaml发布了新的文献求助10
3秒前
栗子完成签到,获得积分10
4秒前
李丽丽关注了科研通微信公众号
4秒前
xinjiasuki完成签到 ,获得积分10
4秒前
5秒前
acutelily完成签到,获得积分10
5秒前
5秒前
夜月残阳完成签到,获得积分10
6秒前
rosalieshi应助感动的笑翠采纳,获得30
6秒前
mp5完成签到,获得积分10
7秒前
忧郁慕青发布了新的文献求助30
7秒前
kunlin1999完成签到 ,获得积分10
7秒前
姝飞糊涂完成签到,获得积分10
8秒前
js完成签到,获得积分10
9秒前
10秒前
华仔应助卟噜采纳,获得10
11秒前
丰富的鞅完成签到,获得积分10
11秒前
ataybabdallah完成签到,获得积分10
11秒前
hy1234完成签到 ,获得积分10
12秒前
Lee完成签到 ,获得积分10
12秒前
12秒前
现在毕业完成签到,获得积分10
13秒前
火星上的兔子完成签到,获得积分10
13秒前
14秒前
14秒前
啊唔完成签到 ,获得积分10
15秒前
深情安青应助阔达小懒虫采纳,获得10
16秒前
香蕉觅云应助dmyy313235采纳,获得10
17秒前
阿琦完成签到 ,获得积分10
17秒前
瘦瘦发布了新的文献求助10
17秒前
LL完成签到 ,获得积分10
18秒前
nadeem完成签到 ,获得积分10
18秒前
慕青应助iwsaml采纳,获得10
18秒前
饶啟豪发布了新的文献求助10
18秒前
不秃头完成签到,获得积分10
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162652
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900951
捐赠科研通 2473107
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175