Identifying Users Across Social Media Networks for Interpretable Fine-Grained Neighborhood Matching by Adaptive GAT

计算机科学 匹配(统计) 万维网 情报检索 数学 统计
作者
Wei Tang,Haifeng Sun,Jingyu Wang,Cong Liu,Qi Qi,Jing Wang,Jianxin Liao
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:16 (5): 3453-3466 被引量:5
标识
DOI:10.1109/tsc.2023.3288872
摘要

The primary concern of numerous online social media network (SMN) platforms is how to provide users with effective and personalized web services. To achieve this goal, SMN platforms typically begin by collecting user preferences based on user behaviors (e.g., browsing history, posts) or user profiles. However, the effective information about a specific user on a single SMN platform is limited and monotonous, preventing a comprehensive reflection of the user's preferences. Therefore, recognizing anonymous but identical users across two SMNs to integrate their information is crucial for enhancing web services. Clearly, cross-platform research has the potential to aid in the resolution of numerous problems in service computing theory and applications. Therefore, in this article, we present the C ross- P latform U ser M atcher ( CPUM ) framework, which attempts to map users into a union vector space and then performs user matching based on distance metrics. In particular, we introduce a GNN-based encoder Ada ptive G raph A ttention Ne t work ( AdaGAT ) for modeling user attributes and topology jointly in the social networks to capture two typical alignment principles: topology consistency and attribute consistency. Moreover, we derive AdaGAT from the heuristic of the spectral network alignment technique FINAL, which theoretically guarantees AdaGAT's efficacy. To the best of our knowledge, AdaGAT is the first representation-based alignment model to integrate these two alignment principles synergistically. In addition, two position encoding schemes are introduced to prevent alignment confusion that commonly arises with GNN-based alignment models. Extensive experiments on real-world datasets validate the superiority of the proposed framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yjihn发布了新的文献求助10
2秒前
Jasper应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
核桃应助科研通管家采纳,获得10
4秒前
4秒前
Ava应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
小马甲应助涵泽采纳,获得10
6秒前
小乌云完成签到 ,获得积分20
6秒前
7秒前
zzz发布了新的文献求助10
8秒前
zx发布了新的文献求助10
8秒前
9秒前
错误锈蚀完成签到,获得积分10
9秒前
123发布了新的文献求助10
10秒前
11秒前
bkagyin应助shinn采纳,获得10
11秒前
细心的语蓉完成签到,获得积分10
12秒前
csm完成签到,获得积分20
13秒前
科研通AI5应助喝杯水再走采纳,获得80
13秒前
姜呱呱呱完成签到,获得积分10
14秒前
风清扬发布了新的文献求助10
14秒前
zx完成签到,获得积分10
15秒前
18秒前
小唐完成签到,获得积分10
20秒前
chunminli完成签到,获得积分10
21秒前
21秒前
Axin发布了新的文献求助20
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967482
求助须知:如何正确求助?哪些是违规求助? 3512759
关于积分的说明 11164944
捐赠科研通 3247740
什么是DOI,文献DOI怎么找? 1794021
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517